MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Unicode version

Theorem infxpenc2 7649
Description: Existence form of infxpenc 7645. A "uniform" or "canonical" version of infxpen 7642, asserting the existence of a single function  g that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2  |-  ( A  e.  On  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
Distinct variable group:    g, b, A

Proof of Theorem infxpenc2
Dummy variables  f  n  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 7409 . 2  |-  ( A  e.  On  ->  E. n A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) ) )
2 df-2o 6480 . . . . . . . 8  |-  2o  =  suc  1o
32oveq2i 5869 . . . . . . 7  |-  ( om 
^o  2o )  =  ( om  ^o  suc  1o )
4 omelon 7347 . . . . . . . 8  |-  om  e.  On
5 1on 6486 . . . . . . . 8  |-  1o  e.  On
6 oesuc 6526 . . . . . . . 8  |-  ( ( om  e.  On  /\  1o  e.  On )  -> 
( om  ^o  suc  1o )  =  ( ( om  ^o  1o )  .o  om ) )
74, 5, 6mp2an 653 . . . . . . 7  |-  ( om 
^o  suc  1o )  =  ( ( om 
^o  1o )  .o 
om )
8 oe1 6542 . . . . . . . . 9  |-  ( om  e.  On  ->  ( om  ^o  1o )  =  om )
94, 8ax-mp 8 . . . . . . . 8  |-  ( om 
^o  1o )  =  om
109oveq1i 5868 . . . . . . 7  |-  ( ( om  ^o  1o )  .o  om )  =  ( om  .o  om )
113, 7, 103eqtri 2307 . . . . . 6  |-  ( om 
^o  2o )  =  ( om  .o  om )
12 omxpen 6964 . . . . . . 7  |-  ( ( om  e.  On  /\  om  e.  On )  -> 
( om  .o  om )  ~~  ( om  X.  om ) )
134, 4, 12mp2an 653 . . . . . 6  |-  ( om 
.o  om )  ~~  ( om  X.  om )
1411, 13eqbrtri 4042 . . . . 5  |-  ( om 
^o  2o )  ~~  ( om  X.  om )
15 xpomen 7643 . . . . 5  |-  ( om 
X.  om )  ~~  om
1614, 15entri 6915 . . . 4  |-  ( om 
^o  2o )  ~~  om
1716a1i 10 . . 3  |-  ( A  e.  On  ->  ( om  ^o  2o )  ~~  om )
18 bren 6871 . . 3  |-  ( ( om  ^o  2o ) 
~~  om  <->  E. f  f : ( om  ^o  2o )
-1-1-onto-> om )
1917, 18sylib 188 . 2  |-  ( A  e.  On  ->  E. f 
f : ( om 
^o  2o ) -1-1-onto-> om )
20 eeanv 1854 . . 3  |-  ( E. n E. f ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om )  <->  ( E. n A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  E. f  f : ( om  ^o  2o ) -1-1-onto-> om ) )
21 simpl 443 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  A  e.  On )
22 simprl 732 . . . . . . 7  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) ) )
23 sseq2 3200 . . . . . . . . 9  |-  ( x  =  b  ->  ( om  C_  x  <->  om  C_  b
) )
24 oveq2 5866 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( om  ^o  y )  =  ( om  ^o  w
) )
25 f1oeq3 5465 . . . . . . . . . . . 12  |-  ( ( om  ^o  y )  =  ( om  ^o  w )  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  y )  <->  ( n `  x ) : x -1-1-onto-> ( om  ^o  w ) ) )
2624, 25syl 15 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  y )  <->  ( n `  x ) : x -1-1-onto-> ( om  ^o  w ) ) )
2726cbvrexv 2765 . . . . . . . . . 10  |-  ( E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
)  <->  E. w  e.  ( On  \  1o ) ( n `  x
) : x -1-1-onto-> ( om 
^o  w ) )
28 fveq2 5525 . . . . . . . . . . . . 13  |-  ( x  =  b  ->  (
n `  x )  =  ( n `  b ) )
29 f1oeq1 5463 . . . . . . . . . . . . 13  |-  ( ( n `  x )  =  ( n `  b )  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : x -1-1-onto-> ( om  ^o  w ) ) )
3028, 29syl 15 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : x -1-1-onto-> ( om  ^o  w ) ) )
31 f1oeq2 5464 . . . . . . . . . . . 12  |-  ( x  =  b  ->  (
( n `  b
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
3230, 31bitrd 244 . . . . . . . . . . 11  |-  ( x  =  b  ->  (
( n `  x
) : x -1-1-onto-> ( om 
^o  w )  <->  ( n `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
3332rexbidv 2564 . . . . . . . . . 10  |-  ( x  =  b  ->  ( E. w  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  w
)  <->  E. w  e.  ( On  \  1o ) ( n `  b
) : b -1-1-onto-> ( om 
^o  w ) ) )
3427, 33syl5bb 248 . . . . . . . . 9  |-  ( x  =  b  ->  ( E. y  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
)  <->  E. w  e.  ( On  \  1o ) ( n `  b
) : b -1-1-onto-> ( om 
^o  w ) ) )
3523, 34imbi12d 311 . . . . . . . 8  |-  ( x  =  b  ->  (
( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x
) : x -1-1-onto-> ( om 
^o  y ) )  <-> 
( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( n `  b
) : b -1-1-onto-> ( om 
^o  w ) ) ) )
3635cbvralv 2764 . . . . . . 7  |-  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y ) )  <->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( n `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
3722, 36sylib 188 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( n `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
38 oveq2 5866 . . . . . . . . 9  |-  ( b  =  z  ->  ( om  ^o  b )  =  ( om  ^o  z
) )
3938cbvmptv 4111 . . . . . . . 8  |-  ( b  e.  ( On  \  1o )  |->  ( om 
^o  b ) )  =  ( z  e.  ( On  \  1o )  |->  ( om  ^o  z ) )
4039cnveqi 4856 . . . . . . 7  |-  `' ( b  e.  ( On 
\  1o )  |->  ( om  ^o  b ) )  =  `' ( z  e.  ( On 
\  1o )  |->  ( om  ^o  z ) )
4140fveq1i 5526 . . . . . 6  |-  ( `' ( b  e.  ( On  \  1o ) 
|->  ( om  ^o  b
) ) `  ran  ( n `  b
) )  =  ( `' ( z  e.  ( On  \  1o )  |->  ( om  ^o  z ) ) `  ran  ( n `  b
) )
42 2on 6487 . . . . . . . . . 10  |-  2o  e.  On
43 peano1 4675 . . . . . . . . . . 11  |-  (/)  e.  om
44 oen0 6584 . . . . . . . . . . 11  |-  ( ( ( om  e.  On  /\  2o  e.  On )  /\  (/)  e.  om )  -> 
(/)  e.  ( om  ^o  2o ) )
4543, 44mpan2 652 . . . . . . . . . 10  |-  ( ( om  e.  On  /\  2o  e.  On )  ->  (/) 
e.  ( om  ^o  2o ) )
464, 42, 45mp2an 653 . . . . . . . . 9  |-  (/)  e.  ( om  ^o  2o )
47 eqid 2283 . . . . . . . . . 10  |-  ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) )  =  ( f  o.  (
(  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) )
4847fveqf1o 5806 . . . . . . . . 9  |-  ( ( f : ( om 
^o  2o ) -1-1-onto-> om  /\  (/) 
e.  ( om  ^o  2o )  /\  (/)  e.  om )  ->  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om  /\  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) ) )
4946, 43, 48mp3an23 1269 . . . . . . . 8  |-  ( f : ( om  ^o  2o ) -1-1-onto-> om  ->  ( (
f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om  /\  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) ) )
5049ad2antll 709 . . . . . . 7  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  -> 
( ( f  o.  ( (  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om  /\  ( ( f  o.  ( (  _I  |`  ( ( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <. (/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) ) )
5150simpld 445 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  -> 
( f  o.  (
(  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) : ( om  ^o  2o )
-1-1-onto-> om )
5250simprd 449 . . . . . 6  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  -> 
( ( f  o.  ( (  _I  |`  (
( om  ^o  2o )  \  { (/) ,  ( `' f `  (/) ) } ) )  u.  { <.
(/) ,  ( `' f `  (/) ) >. ,  <. ( `' f `
 (/) ) ,  (/) >. } ) ) `  (/) )  =  (/) )
5321, 37, 41, 51, 52infxpenc2lem3 7648 . . . . 5  |-  ( ( A  e.  On  /\  ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om ) )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
5453ex 423 . . . 4  |-  ( A  e.  On  ->  (
( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x
) : x -1-1-onto-> ( om 
^o  y ) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
5554exlimdvv 1668 . . 3  |-  ( A  e.  On  ->  ( E. n E. f ( A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On 
\  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y
) )  /\  f : ( om  ^o  2o ) -1-1-onto-> om )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
5620, 55syl5bir 209 . 2  |-  ( A  e.  On  ->  (
( E. n A. x  e.  A  ( om  C_  x  ->  E. y  e.  ( On  \  1o ) ( n `  x ) : x -1-1-onto-> ( om  ^o  y ) )  /\  E. f 
f : ( om 
^o  2o ) -1-1-onto-> om )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
571, 19, 56mp2and 660 1  |-  ( A  e.  On  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    \ cdif 3149    u. cun 3150    C_ wss 3152   (/)c0 3455   {cpr 3641   <.cop 3643   class class class wbr 4023    e. cmpt 4077    _I cid 4304   Oncon0 4392   suc csuc 4394   omcom 4656    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691    o. ccom 4693   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   1oc1o 6472   2oc2o 6473    .o comu 6477    ^o coe 6478    ~~ cen 6860
This theorem is referenced by:  pwfseq  8286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-cnf 7363  df-card 7572
  Copyright terms: Public domain W3C validator