MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem2 Unicode version

Theorem infxpenc2lem2 7647
Description: Lemma for infxpenc2 7649. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
infxpenc2.1  |-  ( ph  ->  A  e.  On )
infxpenc2.2  |-  ( ph  ->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( n `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
infxpenc2.3  |-  W  =  ( `' ( x  e.  ( On  \  1o )  |->  ( om 
^o  x ) ) `
 ran  ( n `  b ) )
infxpenc2.4  |-  ( ph  ->  F : ( om 
^o  2o ) -1-1-onto-> om )
infxpenc2.5  |-  ( ph  ->  ( F `  (/) )  =  (/) )
infxpenc2.k  |-  K  =  ( y  e.  {
x  e.  ( ( om  ^o  2o )  ^m  W )  |  ( `' x "
( _V  \  1o ) )  e.  Fin } 
|->  ( F  o.  (
y  o.  `' (  _I  |`  W )
) ) )
infxpenc2.h  |-  H  =  ( ( ( om CNF 
W )  o.  K
)  o.  `' ( ( om  ^o  2o ) CNF  W ) )
infxpenc2.l  |-  L  =  ( y  e.  {
x  e.  ( om 
^m  ( W  .o  2o ) )  |  ( `' x " ( _V 
\  1o ) )  e.  Fin }  |->  ( (  _I  |`  om )  o.  ( y  o.  `' ( Y  o.  `' X ) ) ) )
infxpenc2.x  |-  X  =  ( z  e.  2o ,  w  e.  W  |->  ( ( W  .o  z )  +o  w
) )
infxpenc2.y  |-  Y  =  ( z  e.  2o ,  w  e.  W  |->  ( ( 2o  .o  w )  +o  z
) )
infxpenc2.j  |-  J  =  ( ( ( om CNF 
( 2o  .o  W
) )  o.  L
)  o.  `' ( om CNF  ( W  .o  2o ) ) )
infxpenc2.z  |-  Z  =  ( x  e.  ( om  ^o  W ) ,  y  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  x )  +o  y
) )
infxpenc2.t  |-  T  =  ( x  e.  b ,  y  e.  b 
|->  <. ( ( n `
 b ) `  x ) ,  ( ( n `  b
) `  y ) >. )
infxpenc2.g  |-  G  =  ( `' ( n `
 b )  o.  ( ( ( H  o.  J )  o.  Z )  o.  T
) )
Assertion
Ref Expression
infxpenc2lem2  |-  ( ph  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
Distinct variable groups:    g, b, n, w, x, y, A    ph, b, w, x, y   
z, g, W, w, x, y    g, F, x, y    g, G   
x, X, y    x, Y, y
Allowed substitution hints:    ph( z, g, n)    A( z)    T( x, y, z, w, g, n, b)    F( z, w, n, b)    G( x, y, z, w, n, b)    H( x, y, z, w, g, n, b)    J( x, y, z, w, g, n, b)    K( x, y, z, w, g, n, b)    L( x, y, z, w, g, n, b)    W( n, b)    X( z, w, g, n, b)    Y( z, w, g, n, b)    Z( x, y, z, w, g, n, b)

Proof of Theorem infxpenc2lem2
StepHypRef Expression
1 infxpenc2.1 . . 3  |-  ( ph  ->  A  e.  On )
2 mptexg 5745 . . 3  |-  ( A  e.  On  ->  (
b  e.  A  |->  G )  e.  _V )
31, 2syl 15 . 2  |-  ( ph  ->  ( b  e.  A  |->  G )  e.  _V )
41adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  A  e.  On )
5 simprl 732 . . . . . . 7  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  b  e.  A )
6 onelon 4417 . . . . . . 7  |-  ( ( A  e.  On  /\  b  e.  A )  ->  b  e.  On )
74, 5, 6syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  b  e.  On )
8 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  om  C_  b
)
9 infxpenc2.2 . . . . . . . 8  |-  ( ph  ->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( n `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
10 infxpenc2.3 . . . . . . . 8  |-  W  =  ( `' ( x  e.  ( On  \  1o )  |->  ( om 
^o  x ) ) `
 ran  ( n `  b ) )
111, 9, 10infxpenc2lem1 7646 . . . . . . 7  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  ( W  e.  ( On  \  1o )  /\  (
n `  b ) : b -1-1-onto-> ( om  ^o  W
) ) )
1211simpld 445 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  W  e.  ( On  \  1o ) )
13 infxpenc2.4 . . . . . . 7  |-  ( ph  ->  F : ( om 
^o  2o ) -1-1-onto-> om )
1413adantr 451 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  F : ( om  ^o  2o ) -1-1-onto-> om )
15 infxpenc2.5 . . . . . . 7  |-  ( ph  ->  ( F `  (/) )  =  (/) )
1615adantr 451 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  ( F `  (/) )  =  (/) )
1711simprd 449 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  (
n `  b ) : b -1-1-onto-> ( om  ^o  W
) )
18 infxpenc2.k . . . . . 6  |-  K  =  ( y  e.  {
x  e.  ( ( om  ^o  2o )  ^m  W )  |  ( `' x "
( _V  \  1o ) )  e.  Fin } 
|->  ( F  o.  (
y  o.  `' (  _I  |`  W )
) ) )
19 infxpenc2.h . . . . . 6  |-  H  =  ( ( ( om CNF 
W )  o.  K
)  o.  `' ( ( om  ^o  2o ) CNF  W ) )
20 infxpenc2.l . . . . . 6  |-  L  =  ( y  e.  {
x  e.  ( om 
^m  ( W  .o  2o ) )  |  ( `' x " ( _V 
\  1o ) )  e.  Fin }  |->  ( (  _I  |`  om )  o.  ( y  o.  `' ( Y  o.  `' X ) ) ) )
21 infxpenc2.x . . . . . 6  |-  X  =  ( z  e.  2o ,  w  e.  W  |->  ( ( W  .o  z )  +o  w
) )
22 infxpenc2.y . . . . . 6  |-  Y  =  ( z  e.  2o ,  w  e.  W  |->  ( ( 2o  .o  w )  +o  z
) )
23 infxpenc2.j . . . . . 6  |-  J  =  ( ( ( om CNF 
( 2o  .o  W
) )  o.  L
)  o.  `' ( om CNF  ( W  .o  2o ) ) )
24 infxpenc2.z . . . . . 6  |-  Z  =  ( x  e.  ( om  ^o  W ) ,  y  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  x )  +o  y
) )
25 infxpenc2.t . . . . . 6  |-  T  =  ( x  e.  b ,  y  e.  b 
|->  <. ( ( n `
 b ) `  x ) ,  ( ( n `  b
) `  y ) >. )
26 infxpenc2.g . . . . . 6  |-  G  =  ( `' ( n `
 b )  o.  ( ( ( H  o.  J )  o.  Z )  o.  T
) )
277, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26infxpenc 7645 . . . . 5  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  G : ( b  X.  b ) -1-1-onto-> b )
28 f1of 5472 . . . . . . . . 9  |-  ( G : ( b  X.  b ) -1-1-onto-> b  ->  G :
( b  X.  b
) --> b )
2927, 28syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  G : ( b  X.  b ) --> b )
30 vex 2791 . . . . . . . . 9  |-  b  e. 
_V
3130, 30xpex 4801 . . . . . . . 8  |-  ( b  X.  b )  e. 
_V
32 fex 5749 . . . . . . . 8  |-  ( ( G : ( b  X.  b ) --> b  /\  ( b  X.  b )  e.  _V )  ->  G  e.  _V )
3329, 31, 32sylancl 643 . . . . . . 7  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  G  e.  _V )
34 eqid 2283 . . . . . . . 8  |-  ( b  e.  A  |->  G )  =  ( b  e.  A  |->  G )
3534fvmpt2 5608 . . . . . . 7  |-  ( ( b  e.  A  /\  G  e.  _V )  ->  ( ( b  e.  A  |->  G ) `  b )  =  G )
365, 33, 35syl2anc 642 . . . . . 6  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  (
( b  e.  A  |->  G ) `  b
)  =  G )
37 f1oeq1 5463 . . . . . 6  |-  ( ( ( b  e.  A  |->  G ) `  b
)  =  G  -> 
( ( ( b  e.  A  |->  G ) `
 b ) : ( b  X.  b
)
-1-1-onto-> b 
<->  G : ( b  X.  b ) -1-1-onto-> b ) )
3836, 37syl 15 . . . . 5  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  (
( ( b  e.  A  |->  G ) `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
G : ( b  X.  b ) -1-1-onto-> b ) )
3927, 38mpbird 223 . . . 4  |-  ( (
ph  /\  ( b  e.  A  /\  om  C_  b
) )  ->  (
( b  e.  A  |->  G ) `  b
) : ( b  X.  b ) -1-1-onto-> b )
4039expr 598 . . 3  |-  ( (
ph  /\  b  e.  A )  ->  ( om  C_  b  ->  (
( b  e.  A  |->  G ) `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
4140ralrimiva 2626 . 2  |-  ( ph  ->  A. b  e.  A  ( om  C_  b  ->  ( ( b  e.  A  |->  G ) `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
42 nfmpt1 4109 . . . . 5  |-  F/_ b
( b  e.  A  |->  G )
4342nfeq2 2430 . . . 4  |-  F/ b  g  =  ( b  e.  A  |->  G )
44 fveq1 5524 . . . . . 6  |-  ( g  =  ( b  e.  A  |->  G )  -> 
( g `  b
)  =  ( ( b  e.  A  |->  G ) `  b ) )
45 f1oeq1 5463 . . . . . 6  |-  ( ( g `  b )  =  ( ( b  e.  A  |->  G ) `
 b )  -> 
( ( g `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( ( b  e.  A  |->  G ) `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
4644, 45syl 15 . . . . 5  |-  ( g  =  ( b  e.  A  |->  G )  -> 
( ( g `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( ( b  e.  A  |->  G ) `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
4746imbi2d 307 . . . 4  |-  ( g  =  ( b  e.  A  |->  G )  -> 
( ( om  C_  b  ->  ( g `  b
) : ( b  X.  b ) -1-1-onto-> b )  <-> 
( om  C_  b  ->  ( ( b  e.  A  |->  G ) `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
4843, 47ralbid 2561 . . 3  |-  ( g  =  ( b  e.  A  |->  G )  -> 
( A. b  e.  A  ( om  C_  b  ->  ( g `  b
) : ( b  X.  b ) -1-1-onto-> b )  <->  A. b  e.  A  ( om  C_  b  ->  ( ( b  e.  A  |->  G ) `  b
) : ( b  X.  b ) -1-1-onto-> b ) ) )
4948spcegv 2869 . 2  |-  ( ( b  e.  A  |->  G )  e.  _V  ->  ( A. b  e.  A  ( om  C_  b  ->  ( ( b  e.  A  |->  G ) `  b
) : ( b  X.  b ) -1-1-onto-> b )  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) ) )
503, 41, 49sylc 56 1  |-  ( ph  ->  E. g A. b  e.  A  ( om  C_  b  ->  ( g `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    C_ wss 3152   (/)c0 3455   <.cop 3643    e. cmpt 4077    _I cid 4304   Oncon0 4392   omcom 4656    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691   "cima 4692    o. ccom 4693   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1oc1o 6472   2oc2o 6473    +o coa 6476    .o comu 6477    ^o coe 6478    ^m cmap 6772   Fincfn 6863   CNF ccnf 7362
This theorem is referenced by:  infxpenc2lem3  7648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-cnf 7363
  Copyright terms: Public domain W3C validator