MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm Unicode version

Theorem infxpidm 8363
Description: The cross product of an infinite set with itself is idempotent. This theorem (which is an AC equivalent) provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This proof follows as a corollary of infxpen 7822. (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
infxpidm  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  A
)

Proof of Theorem infxpidm
StepHypRef Expression
1 reldom 7044 . . . 4  |-  Rel  ~<_
21brrelex2i 4852 . . 3  |-  ( om  ~<_  A  ->  A  e.  _V )
3 numth3 8276 . . 3  |-  ( A  e.  _V  ->  A  e.  dom  card )
42, 3syl 16 . 2  |-  ( om  ~<_  A  ->  A  e.  dom  card )
5 infxpidm2 7824 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
64, 5mpancom 651 1  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   _Vcvv 2892   class class class wbr 4146   omcom 4778    X. cxp 4809   dom cdm 4811    ~~ cen 7035    ~<_ cdom 7036   cardccrd 7748
This theorem is referenced by:  unirnfdomd  8368  inar1  8576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-ac2 8269
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-oi 7405  df-card 7752  df-ac 7923
  Copyright terms: Public domain W3C validator