MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ingru Unicode version

Theorem ingru 8437
Description: The intersection of a universe with a class that acts like a universe is another universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ingru  |-  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  e.  Univ  ->  ( U  i^i  A )  e. 
Univ ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    U( x, y)

Proof of Theorem ingru
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ineq1 3363 . . . . 5  |-  ( u  =  U  ->  (
u  i^i  A )  =  ( U  i^i  A ) )
21eleq1d 2349 . . . 4  |-  ( u  =  U  ->  (
( u  i^i  A
)  e.  Univ  <->  ( U  i^i  A )  e.  Univ ) )
32imbi2d 307 . . 3  |-  ( u  =  U  ->  (
( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  (
u  i^i  A )  e.  Univ )  <->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  i^i  A )  e. 
Univ ) ) )
4 elgrug 8414 . . . . . 6  |-  ( u  e.  Univ  ->  ( u  e.  Univ  <->  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) ) ) )
54ibi 232 . . . . 5  |-  ( u  e.  Univ  ->  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )
) )
6 trin 4123 . . . . . . 7  |-  ( ( Tr  u  /\  Tr  A )  ->  Tr  ( u  i^i  A ) )
76ex 423 . . . . . 6  |-  ( Tr  u  ->  ( Tr  A  ->  Tr  ( u  i^i  A ) ) )
8 inss1 3389 . . . . . . . 8  |-  ( u  i^i  A )  C_  u
9 ssralv 3237 . . . . . . . 8  |-  ( ( u  i^i  A ) 
C_  u  ->  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u ) ) )
108, 9ax-mp 8 . . . . . . 7  |-  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x
) U. ran  y  e.  u ) )
11 inss2 3390 . . . . . . . 8  |-  ( u  i^i  A )  C_  A
12 ssralv 3237 . . . . . . . 8  |-  ( ( u  i^i  A ) 
C_  A  ->  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) ) ) )
1311, 12ax-mp 8 . . . . . . 7  |-  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) ) )
14 elin 3358 . . . . . . . . . . . . 13  |-  ( ~P x  e.  ( u  i^i  A )  <->  ( ~P x  e.  u  /\  ~P x  e.  A
) )
1514simplbi2 608 . . . . . . . . . . . 12  |-  ( ~P x  e.  u  -> 
( ~P x  e.  A  ->  ~P x  e.  ( u  i^i  A
) ) )
16 ssralv 3237 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  A ) 
C_  u  ->  ( A. y  e.  u  { x ,  y }  e.  u  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  u ) )
178, 16ax-mp 8 . . . . . . . . . . . . 13  |-  ( A. y  e.  u  {
x ,  y }  e.  u  ->  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  u
)
18 ssralv 3237 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  A ) 
C_  A  ->  ( A. y  e.  A  { x ,  y }  e.  A  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  A ) )
1911, 18ax-mp 8 . . . . . . . . . . . . 13  |-  ( A. y  e.  A  {
x ,  y }  e.  A  ->  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  A
)
20 elin 3358 . . . . . . . . . . . . . . 15  |-  ( { x ,  y }  e.  ( u  i^i 
A )  <->  ( {
x ,  y }  e.  u  /\  {
x ,  y }  e.  A ) )
2120simplbi2 608 . . . . . . . . . . . . . 14  |-  ( { x ,  y }  e.  u  ->  ( { x ,  y }  e.  A  ->  { x ,  y }  e.  ( u  i^i  A ) ) )
2221ral2imi 2619 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( u  i^i  A ) { x ,  y }  e.  u  ->  ( A. y  e.  ( u  i^i  A
) { x ,  y }  e.  A  ->  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) ) )
2317, 19, 22syl2im 34 . . . . . . . . . . . 12  |-  ( A. y  e.  u  {
x ,  y }  e.  u  ->  ( A. y  e.  A  { x ,  y }  e.  A  ->  A. y  e.  (
u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) ) )
2415, 23im2anan9 808 . . . . . . . . . . 11  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  ->  ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  -> 
( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A ) ) ) )
25 vex 2791 . . . . . . . . . . . . . 14  |-  u  e. 
_V
26 mapss 6810 . . . . . . . . . . . . . 14  |-  ( ( u  e.  _V  /\  ( u  i^i  A ) 
C_  u )  -> 
( ( u  i^i 
A )  ^m  x
)  C_  ( u  ^m  x ) )
2725, 8, 26mp2an 653 . . . . . . . . . . . . 13  |-  ( ( u  i^i  A )  ^m  x )  C_  ( u  ^m  x
)
28 ssralv 3237 . . . . . . . . . . . . 13  |-  ( ( ( u  i^i  A
)  ^m  x )  C_  ( u  ^m  x
)  ->  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  A. y  e.  ( ( u  i^i  A )  ^m  x ) U. ran  y  e.  u
) )
2927, 28ax-mp 8 . . . . . . . . . . . 12  |-  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  A. y  e.  ( ( u  i^i  A )  ^m  x ) U. ran  y  e.  u
)
3025inex1 4155 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  A )  e. 
_V
31 vex 2791 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
3230, 31elmap 6796 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ( u  i^i  A )  ^m  x )  <->  y :
x --> ( u  i^i 
A ) )
33 fss 5397 . . . . . . . . . . . . . . . . 17  |-  ( ( y : x --> ( u  i^i  A )  /\  ( u  i^i  A ) 
C_  A )  -> 
y : x --> A )
3411, 33mpan2 652 . . . . . . . . . . . . . . . 16  |-  ( y : x --> ( u  i^i  A )  -> 
y : x --> A )
3532, 34sylbi 187 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( u  i^i  A )  ^m  x )  ->  y : x --> A )
3635imim1i 54 . . . . . . . . . . . . . 14  |-  ( ( y : x --> A  ->  U. ran  y  e.  A
)  ->  ( y  e.  ( ( u  i^i 
A )  ^m  x
)  ->  U. ran  y  e.  A ) )
3736alimi 1546 . . . . . . . . . . . . 13  |-  ( A. y ( y : x --> A  ->  U. ran  y  e.  A )  ->  A. y ( y  e.  ( ( u  i^i  A )  ^m  x )  ->  U. ran  y  e.  A )
)
38 df-ral 2548 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( (
u  i^i  A )  ^m  x ) U. ran  y  e.  A  <->  A. y
( y  e.  ( ( u  i^i  A
)  ^m  x )  ->  U. ran  y  e.  A ) )
3937, 38sylibr 203 . . . . . . . . . . . 12  |-  ( A. y ( y : x --> A  ->  U. ran  y  e.  A )  ->  A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  A
)
40 elin 3358 . . . . . . . . . . . . . 14  |-  ( U. ran  y  e.  (
u  i^i  A )  <->  ( U. ran  y  e.  u  /\  U. ran  y  e.  A )
)
4140simplbi2 608 . . . . . . . . . . . . 13  |-  ( U. ran  y  e.  u  ->  ( U. ran  y  e.  A  ->  U. ran  y  e.  ( u  i^i  A ) ) )
4241ral2imi 2619 . . . . . . . . . . . 12  |-  ( A. y  e.  ( (
u  i^i  A )  ^m  x ) U. ran  y  e.  u  ->  ( A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  A  ->  A. y  e.  ( ( u  i^i  A
)  ^m  x ) U. ran  y  e.  ( u  i^i  A ) ) )
4329, 39, 42syl2im 34 . . . . . . . . . . 11  |-  ( A. y  e.  ( u  ^m  x ) U. ran  y  e.  u  ->  ( A. y ( y : x --> A  ->  U. ran  y  e.  A
)  ->  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) )
4424, 43im2anan9 808 . . . . . . . . . 10  |-  ( ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u )  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )  ->  ( ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
45443impa 1146 . . . . . . . . 9  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( (
( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
46 df-3an 936 . . . . . . . . 9  |-  ( ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  <->  ( ( ~P x  e.  A  /\  A. y  e.  A  {
x ,  y }  e.  A )  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )
47 df-3an 936 . . . . . . . . 9  |-  ( ( ~P x  e.  ( u  i^i  A )  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) )  <->  ( ( ~P x  e.  (
u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A ) )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) )
4845, 46, 473imtr4g 261 . . . . . . . 8  |-  ( ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  ( ~P x  e.  ( u  i^i  A )  /\  A. y  e.  ( u  i^i  A ) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
4948ral2imi 2619 . . . . . . 7  |-  ( A. x  e.  ( u  i^i  A ) ( ~P x  e.  u  /\  A. y  e.  u  {
x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u )  ->  ( A. x  e.  ( u  i^i  A
) ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A
) )  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
5010, 13, 49syl2im 34 . . . . . 6  |-  ( A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
)  ->  ( A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
)  ->  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
517, 50im2anan9 808 . . . . 5  |-  ( ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) )  ->  (
( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( Tr  ( u  i^i  A
)  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
525, 51syl 15 . . . 4  |-  ( u  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( Tr  ( u  i^i  A
)  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
53 elgrug 8414 . . . . 5  |-  ( ( u  i^i  A )  e.  _V  ->  (
( u  i^i  A
)  e.  Univ  <->  ( Tr  ( u  i^i  A )  /\  A. x  e.  ( u  i^i  A
) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) ) )
5430, 53ax-mp 8 . . . 4  |-  ( ( u  i^i  A )  e.  Univ  <->  ( Tr  (
u  i^i  A )  /\  A. x  e.  ( u  i^i  A ) ( ~P x  e.  ( u  i^i  A
)  /\  A. y  e.  ( u  i^i  A
) { x ,  y }  e.  ( u  i^i  A )  /\  A. y  e.  ( ( u  i^i 
A )  ^m  x
) U. ran  y  e.  ( u  i^i  A
) ) ) )
5552, 54syl6ibr 218 . . 3  |-  ( u  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  (
u  i^i  A )  e.  Univ ) )
563, 55vtoclga 2849 . 2  |-  ( U  e.  Univ  ->  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  i^i  A )  e. 
Univ ) )
5756com12 27 1  |-  ( ( Tr  A  /\  A. x  e.  A  ( ~P x  e.  A  /\  A. y  e.  A  { x ,  y }  e.  A  /\  A. y ( y : x --> A  ->  U. ran  y  e.  A )
) )  ->  ( U  e.  Univ  ->  ( U  i^i  A )  e. 
Univ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {cpr 3641   U.cuni 3827   Tr wtr 4113   ran crn 4690   -->wf 5251  (class class class)co 5858    ^m cmap 6772   Univcgru 8412
This theorem is referenced by:  wfgru  8438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-gru 8413
  Copyright terms: Public domain W3C validator