Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindi Structured version   Unicode version

Theorem inindi 3560
 Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
Assertion
Ref Expression
inindi

Proof of Theorem inindi
StepHypRef Expression
1 inidm 3552 . . 3
21ineq1i 3540 . 2
3 in4 3559 . 2
42, 3eqtr3i 2460 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   cin 3321 This theorem is referenced by:  difundi  3595  dfif5  3753  resindi  5165  offres  6322  incexclem  12621  bitsinv1  12959  bitsinvp1  12966  bitsres  12990  fh1  23125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-in 3329
 Copyright terms: Public domain W3C validator