Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inixp Structured version   Unicode version

Theorem inixp 26444
 Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
inixp
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem inixp
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 an4 799 . . . 4
2 anidm 627 . . . . 5
3 r19.26 2840 . . . . . 6
4 elin 3532 . . . . . . . 8
54bicomi 195 . . . . . . 7
65ralbii 2731 . . . . . 6
73, 6bitr3i 244 . . . . 5
82, 7anbi12i 680 . . . 4
91, 8bitri 242 . . 3
10 vex 2961 . . . . 5
1110elixp 7072 . . . 4
1210elixp 7072 . . . 4
1311, 12anbi12i 680 . . 3
1410elixp 7072 . . 3
159, 13, 143bitr4i 270 . 2
1615ineqri 3536 1
 Colors of variables: wff set class Syntax hints:   wa 360   wceq 1653   wcel 1726  wral 2707   cin 3321   wfn 5452  cfv 5457  cixp 7066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465  df-ixp 7067
 Copyright terms: Public domain W3C validator