MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inpreima Unicode version

Theorem inpreima 5652
Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
Assertion
Ref Expression
inpreima  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )

Proof of Theorem inpreima
StepHypRef Expression
1 funcnvcnv 5308 . 2  |-  ( Fun 
F  ->  Fun  `' `' F )
2 imain 5328 . 2  |-  ( Fun  `' `' F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
31, 2syl 15 1  |-  ( Fun 
F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    i^i cin 3151   `'ccnv 4688   "cima 4692   Fun wfun 5249
This theorem is referenced by:  nn0supp  10017  cnrest2  17014  cnhaus  17082  kgencn3  17253  qtoptop2  17390  basqtop  17402  ismbfd  18995  mbfimaopn2  19012  i1fima  19033  i1fima2  19034  i1fd  19036  fimacnvinrn  23199  sspreima  23210  disjpreima  23361  inpreimaOLD  26367  fsuppeq  27259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257
  Copyright terms: Public domain W3C validator