MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab2 Unicode version

Theorem inrab2 3441
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2  |-  ( { x  e.  A  |  ph }  i^i  B )  =  { x  e.  ( A  i^i  B
)  |  ph }
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 2552 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 abid2 2400 . . . 4  |-  { x  |  x  e.  B }  =  B
32eqcomi 2287 . . 3  |-  B  =  { x  |  x  e.  B }
41, 3ineq12i 3368 . 2  |-  ( { x  e.  A  |  ph }  i^i  B )  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B }
)
5 df-rab 2552 . . 3  |-  { x  e.  ( A  i^i  B
)  |  ph }  =  { x  |  ( x  e.  ( A  i^i  B )  /\  ph ) }
6 inab 3436 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  x  e.  B ) }
7 elin 3358 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
87anbi1i 676 . . . . . 6  |-  ( ( x  e.  ( A  i^i  B )  /\  ph )  <->  ( ( x  e.  A  /\  x  e.  B )  /\  ph ) )
9 an32 773 . . . . . 6  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  /\  x  e.  B ) )
108, 9bitri 240 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  /\  x  e.  B
) )
1110abbii 2395 . . . 4  |-  { x  |  ( x  e.  ( A  i^i  B
)  /\  ph ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  x  e.  B
) }
126, 11eqtr4i 2306 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B } )  =  {
x  |  ( x  e.  ( A  i^i  B )  /\  ph ) }
135, 12eqtr4i 2306 . 2  |-  { x  e.  ( A  i^i  B
)  |  ph }  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  x  e.  B }
)
144, 13eqtr4i 2306 1  |-  ( { x  e.  A  |  ph }  i^i  B )  =  { x  e.  ( A  i^i  B
)  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   {crab 2547    i^i cin 3151
This theorem is referenced by:  iooval2  10689  fzval2  10785  smuval2  12673  smueqlem  12681  dfphi2  12842  ordtrest  16932  ordtrest2lem  16933  bsstrs  26146  nbssntrs  26147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-in 3159
  Copyright terms: Public domain W3C validator