MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intcld Unicode version

Theorem intcld 17067
Description: The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
intcld  |-  ( ( A  =/=  (/)  /\  A  C_  ( Clsd `  J
) )  ->  |^| A  e.  ( Clsd `  J
) )

Proof of Theorem intcld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 intiin 4113 . 2  |-  |^| A  =  |^|_ x  e.  A  x
2 dfss3 3306 . . 3  |-  ( A 
C_  ( Clsd `  J
)  <->  A. x  e.  A  x  e.  ( Clsd `  J ) )
3 iincld 17066 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  x  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  x  e.  ( Clsd `  J )
)
42, 3sylan2b 462 . 2  |-  ( ( A  =/=  (/)  /\  A  C_  ( Clsd `  J
) )  ->  |^|_ x  e.  A  x  e.  ( Clsd `  J )
)
51, 4syl5eqel 2496 1  |-  ( ( A  =/=  (/)  /\  A  C_  ( Clsd `  J
) )  ->  |^| A  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721    =/= wne 2575   A.wral 2674    C_ wss 3288   (/)c0 3596   |^|cint 4018   |^|_ciin 4062   ` cfv 5421   Clsdccld 17043
This theorem is referenced by:  incld  17070  clscld  17074  cldmre  17105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fn 5424  df-fv 5429  df-top 16926  df-cld 17046
  Copyright terms: Public domain W3C validator