MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfracq Unicode version

Theorem intfracq 10963
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 10962. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1  |-  Z  =  ( |_ `  ( M  /  N ) )
intfracq.2  |-  F  =  ( ( M  /  N )  -  Z
)
Assertion
Ref Expression
intfracq  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )

Proof of Theorem intfracq
StepHypRef Expression
1 zre 10028 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 451 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  RR )
3 nnre 9753 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
43adantl 452 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
5 nnne0 9778 . . . . . 6  |-  ( N  e.  NN  ->  N  =/=  0 )
65adantl 452 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
72, 4, 6redivcld 9588 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
8 intfracq.1 . . . . 5  |-  Z  =  ( |_ `  ( M  /  N ) )
9 intfracq.2 . . . . 5  |-  F  =  ( ( M  /  N )  -  Z
)
108, 9intfrac2 10962 . . . 4  |-  ( ( M  /  N )  e.  RR  ->  (
0  <_  F  /\  F  <  1  /\  ( M  /  N )  =  ( Z  +  F
) ) )
117, 10syl 15 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <  1  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
1211simp1d 967 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <_  F )
13 fraclt1 10934 . . . . . . 7  |-  ( ( M  /  N )  e.  RR  ->  (
( M  /  N
)  -  ( |_
`  ( M  /  N ) ) )  <  1 )
147, 13syl 15 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )  <  1 )
158oveq2i 5869 . . . . . . . 8  |-  ( ( M  /  N )  -  Z )  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
169, 15eqtri 2303 . . . . . . 7  |-  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
1716a1i 10 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N
) ) ) )
18 nncn 9754 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
1918, 5dividd 9534 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
2019adantl 452 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
2114, 17, 203brtr4d 4053 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <  ( N  /  N ) )
22 reflcl 10928 . . . . . . . . . 10  |-  ( ( M  /  N )  e.  RR  ->  ( |_ `  ( M  /  N ) )  e.  RR )
237, 22syl 15 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  RR )
248, 23syl5eqel 2367 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  RR )
257, 24resubcld 9211 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  Z
)  e.  RR )
269, 25syl5eqel 2367 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  e.  RR )
27 nngt0 9775 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
283, 27jca 518 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
2928adantl 452 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  e.  RR  /\  0  <  N ) )
30 ltmuldiv2 9627 . . . . . 6  |-  ( ( F  e.  RR  /\  N  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3126, 4, 29, 30syl3anc 1182 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3221, 31mpbird 223 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <  N )
339oveq2i 5869 . . . . . . 7  |-  ( N  x.  F )  =  ( N  x.  (
( M  /  N
)  -  Z ) )
3418adantl 452 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
357recnd 8861 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
367flcld 10930 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
378, 36syl5eqel 2367 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  ZZ )
3837zcnd 10118 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  CC )
3934, 35, 38subdid 9235 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  (
( M  /  N
)  -  Z ) )  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
4033, 39syl5eq 2327 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
41 zcn 10029 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 451 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
4342, 34, 6divcan2d 9538 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
44 simpl 443 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
4543, 44eqeltrd 2357 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  e.  ZZ )
46 nnz 10045 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4746adantl 452 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4847, 37zmulcld 10123 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  Z
)  e.  ZZ )
4945, 48zsubcld 10122 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( M  /  N
) )  -  ( N  x.  Z )
)  e.  ZZ )
5040, 49eqeltrd 2357 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  e.  ZZ )
51 zltlem1 10070 . . . . 5  |-  ( ( ( N  x.  F
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
5250, 47, 51syl2anc 642 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
5332, 52mpbid 201 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <_  ( N  -  1 ) )
54 peano2rem 9113 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
553, 54syl 15 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
5655adantl 452 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
57 lemuldiv2 9636 . . . 4  |-  ( ( F  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <->  F  <_  ( ( N  -  1 )  /  N ) ) )
5826, 56, 29, 57syl3anc 1182 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <-> 
F  <_  ( ( N  -  1 )  /  N ) ) )
5953, 58mpbid 201 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <_  ( ( N  -  1 )  /  N ) )
6011simp3d 969 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  =  ( Z  +  F ) )
6112, 59, 603jca 1132 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   ZZcz 10024   |_cfl 10924
This theorem is referenced by:  fldiv  10964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fl 10925
  Copyright terms: Public domain W3C validator