MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin Structured version   Unicode version

Theorem intmin 4070
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem intmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2959 . . . . 5  |-  y  e. 
_V
21elintrab 4062 . . . 4  |-  ( y  e.  |^| { x  e.  B  |  A  C_  x }  <->  A. x  e.  B  ( A  C_  x  -> 
y  e.  x ) )
3 ssid 3367 . . . . 5  |-  A  C_  A
4 sseq2 3370 . . . . . . 7  |-  ( x  =  A  ->  ( A  C_  x  <->  A  C_  A
) )
5 eleq2 2497 . . . . . . 7  |-  ( x  =  A  ->  (
y  e.  x  <->  y  e.  A ) )
64, 5imbi12d 312 . . . . . 6  |-  ( x  =  A  ->  (
( A  C_  x  ->  y  e.  x )  <-> 
( A  C_  A  ->  y  e.  A ) ) )
76rspcv 3048 . . . . 5  |-  ( A  e.  B  ->  ( A. x  e.  B  ( A  C_  x  -> 
y  e.  x )  ->  ( A  C_  A  ->  y  e.  A
) ) )
83, 7mpii 41 . . . 4  |-  ( A  e.  B  ->  ( A. x  e.  B  ( A  C_  x  -> 
y  e.  x )  ->  y  e.  A
) )
92, 8syl5bi 209 . . 3  |-  ( A  e.  B  ->  (
y  e.  |^| { x  e.  B  |  A  C_  x }  ->  y  e.  A ) )
109ssrdv 3354 . 2  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  C_  A
)
11 ssintub 4068 . . 3  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
1211a1i 11 . 2  |-  ( A  e.  B  ->  A  C_ 
|^| { x  e.  B  |  A  C_  x }
)
1310, 12eqssd 3365 1  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   A.wral 2705   {crab 2709    C_ wss 3320   |^|cint 4050
This theorem is referenced by:  intmin2  4077  ordintdif  4630  bm2.5ii  4786  onsucmin  4801  rankonidlem  7754  rankval4  7793  mrcid  13838  lspid  16058  aspid  16389  cldcls  17106  spanid  22849  chsupid  22914  igenidl2  26675  pclidN  30693  diaocN  31923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rab 2714  df-v 2958  df-in 3327  df-ss 3334  df-int 4051
  Copyright terms: Public domain W3C validator