Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin2 Structured version   Unicode version

Theorem intmin2 4077
 Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1
Assertion
Ref Expression
intmin2
Distinct variable group:   ,

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2973 . . 3
21inteqi 4054 . 2
3 intmin2.1 . . 3
4 intmin 4070 . . 3
53, 4ax-mp 8 . 2
62, 5eqtr3i 2458 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wcel 1725  cab 2422  crab 2709  cvv 2956   wss 3320  cint 4050 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rab 2714  df-v 2958  df-in 3327  df-ss 3334  df-int 4051
 Copyright terms: Public domain W3C validator