MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin3 Unicode version

Theorem intmin3 3906
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
intmin3.3  |-  ps
Assertion
Ref Expression
intmin3  |-  ( A  e.  V  ->  |^| { x  |  ph }  C_  A
)
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3  |-  ps
2 intmin3.2 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32elabg 2928 . . 3  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps )
)
41, 3mpbiri 224 . 2  |-  ( A  e.  V  ->  A  e.  { x  |  ph } )
5 intss1 3893 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5syl 15 1  |-  ( A  e.  V  ->  |^| { x  |  ph }  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   {cab 2282    C_ wss 3165   |^|cint 3878
This theorem is referenced by:  intabs  4188  intid  4247  eqint  25063  pfsubkl  26150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-in 3172  df-ss 3179  df-int 3879
  Copyright terms: Public domain W3C validator