Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin3 Unicode version

Theorem intmin3 3906
 Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2
intmin3.3
Assertion
Ref Expression
intmin3
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3
2 intmin3.2 . . . 4
32elabg 2928 . . 3
41, 3mpbiri 224 . 2
5 intss1 3893 . 2
64, 5syl 15 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wceq 1632   wcel 1696  cab 2282   wss 3165  cint 3878 This theorem is referenced by:  intabs  4188  intid  4247  eqint  25063  pfsubkl  26150 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-in 3172  df-ss 3179  df-int 3879
 Copyright terms: Public domain W3C validator