MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inttsk Structured version   Unicode version

Theorem inttsk 8649
Description: The intersection of a collection of Tarski's classes is a Tarski's class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
inttsk  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  |^| A  e.  Tarski )

Proof of Theorem inttsk
Dummy variables  t 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . . . . 8  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  ->  A  C_  Tarski )
21sselda 3348 . . . . . . 7  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  /\  t  e.  A
)  ->  t  e.  Tarski )
3 elinti 4059 . . . . . . . . 9  |-  ( z  e.  |^| A  ->  (
t  e.  A  -> 
z  e.  t ) )
43imp 419 . . . . . . . 8  |-  ( ( z  e.  |^| A  /\  t  e.  A
)  ->  z  e.  t )
54adantll 695 . . . . . . 7  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  /\  t  e.  A
)  ->  z  e.  t )
6 tskpwss 8627 . . . . . . 7  |-  ( ( t  e.  Tarski  /\  z  e.  t )  ->  ~P z  C_  t )
72, 5, 6syl2anc 643 . . . . . 6  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  /\  t  e.  A
)  ->  ~P z  C_  t )
87ralrimiva 2789 . . . . 5  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  ->  A. t  e.  A  ~P z  C_  t )
9 ssint 4066 . . . . 5  |-  ( ~P z  C_  |^| A  <->  A. t  e.  A  ~P z  C_  t )
108, 9sylibr 204 . . . 4  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  ->  ~P z  C_  |^| A
)
11 tskpw 8628 . . . . . . 7  |-  ( ( t  e.  Tarski  /\  z  e.  t )  ->  ~P z  e.  t )
122, 5, 11syl2anc 643 . . . . . 6  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  /\  t  e.  A
)  ->  ~P z  e.  t )
1312ralrimiva 2789 . . . . 5  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  ->  A. t  e.  A  ~P z  e.  t
)
14 vex 2959 . . . . . . 7  |-  z  e. 
_V
1514pwex 4382 . . . . . 6  |-  ~P z  e.  _V
1615elint2 4057 . . . . 5  |-  ( ~P z  e.  |^| A  <->  A. t  e.  A  ~P z  e.  t )
1713, 16sylibr 204 . . . 4  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  ->  ~P z  e.  |^| A
)
1810, 17jca 519 . . 3  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  |^| A )  -> 
( ~P z  C_  |^| A  /\  ~P z  e.  |^| A ) )
1918ralrimiva 2789 . 2  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  A. z  e.  |^| A ( ~P z  C_  |^| A  /\  ~P z  e.  |^| A
) )
20 elpwi 3807 . . . 4  |-  ( z  e.  ~P |^| A  ->  z  C_  |^| A )
21 rexnal 2716 . . . . . . . 8  |-  ( E. t  e.  A  -.  z  e.  t  <->  -.  A. t  e.  A  z  e.  t )
22 simpr 448 . . . . . . . . . . . . 13  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  A  =/=  (/) )
23 intex 4356 . . . . . . . . . . . . 13  |-  ( A  =/=  (/)  <->  |^| A  e.  _V )
2422, 23sylib 189 . . . . . . . . . . . 12  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  |^| A  e.  _V )
2524ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  |^| A  e.  _V )
26 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  z  C_ 
|^| A )
27 ssdomg 7153 . . . . . . . . . . 11  |-  ( |^| A  e.  _V  ->  ( z  C_  |^| A  -> 
z  ~<_  |^| A ) )
2825, 26, 27sylc 58 . . . . . . . . . 10  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  z  ~<_  |^| A )
29 vex 2959 . . . . . . . . . . . 12  |-  t  e. 
_V
30 intss1 4065 . . . . . . . . . . . . 13  |-  ( t  e.  A  ->  |^| A  C_  t )
3130ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  |^| A  C_  t )
32 ssdomg 7153 . . . . . . . . . . . 12  |-  ( t  e.  _V  ->  ( |^| A  C_  t  ->  |^| A  ~<_  t ) )
3329, 31, 32mpsyl 61 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  |^| A  ~<_  t )
34 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  -.  z  e.  t )
35 simplll 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  A  C_ 
Tarski )
36 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  t  e.  A )
3735, 36sseldd 3349 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  t  e.  Tarski )
3826, 31sstrd 3358 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  z  C_  t )
39 tsken 8629 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  Tarski  /\  z  C_  t )  ->  (
z  ~~  t  \/  z  e.  t )
)
4037, 38, 39syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  (
z  ~~  t  \/  z  e.  t )
)
4140ord 367 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  ( -.  z  ~~  t  -> 
z  e.  t ) )
4234, 41mt3d 119 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  z  ~~  t )
4342ensymd 7158 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  t  ~~  z )
44 domentr 7166 . . . . . . . . . . 11  |-  ( (
|^| A  ~<_  t  /\  t  ~~  z )  ->  |^| A  ~<_  z )
4533, 43, 44syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  |^| A  ~<_  z )
46 sbth 7227 . . . . . . . . . 10  |-  ( ( z  ~<_  |^| A  /\  |^| A  ~<_  z )  -> 
z  ~~  |^| A )
4728, 45, 46syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_  |^| A )  /\  ( t  e.  A  /\  -.  z  e.  t ) )  ->  z  ~~  |^| A )
4847rexlimdvaa 2831 . . . . . . . 8  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_ 
|^| A )  -> 
( E. t  e.  A  -.  z  e.  t  ->  z  ~~  |^| A ) )
4921, 48syl5bir 210 . . . . . . 7  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_ 
|^| A )  -> 
( -.  A. t  e.  A  z  e.  t  ->  z  ~~  |^| A ) )
5049con1d 118 . . . . . 6  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_ 
|^| A )  -> 
( -.  z  ~~  |^| A  ->  A. t  e.  A  z  e.  t ) )
5114elint2 4057 . . . . . 6  |-  ( z  e.  |^| A  <->  A. t  e.  A  z  e.  t )
5250, 51syl6ibr 219 . . . . 5  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_ 
|^| A )  -> 
( -.  z  ~~  |^| A  ->  z  e.  |^| A ) )
5352orrd 368 . . . 4  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  C_ 
|^| A )  -> 
( z  ~~  |^| A  \/  z  e.  |^| A ) )
5420, 53sylan2 461 . . 3  |-  ( ( ( A  C_  Tarski  /\  A  =/=  (/) )  /\  z  e.  ~P |^| A )  ->  ( z  ~~  |^| A  \/  z  e. 
|^| A ) )
5554ralrimiva 2789 . 2  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  A. z  e.  ~P  |^| A ( z 
~~  |^| A  \/  z  e.  |^| A ) )
56 eltsk2g 8626 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e.  Tarski  <->  ( A. z  e.  |^| A
( ~P z  C_  |^| A  /\  ~P z  e.  |^| A )  /\  A. z  e.  ~P  |^| A ( z  ~~  |^| A  \/  z  e. 
|^| A ) ) ) )
5724, 56syl 16 . 2  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  ( |^| A  e.  Tarski  <->  ( A. z  e.  |^| A ( ~P z  C_  |^| A  /\  ~P z  e.  |^| A )  /\  A. z  e.  ~P  |^| A
( z  ~~  |^| A  \/  z  e.  |^| A ) ) ) )
5819, 55, 57mpbir2and 889 1  |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  |^| A  e.  Tarski )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   |^|cint 4050   class class class wbr 4212    ~~ cen 7106    ~<_ cdom 7107   Tarskictsk 8623
This theorem is referenced by:  tskmcl  8716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-int 4051  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-er 6905  df-en 7110  df-dom 7111  df-tsk 8624
  Copyright terms: Public domain W3C validator