MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intun Structured version   Unicode version

Theorem intun 4083
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun  |-  |^| ( A  u.  B )  =  ( |^| A  i^i  |^| B )

Proof of Theorem intun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1604 . . . 4  |-  ( A. y ( ( y  e.  A  ->  x  e.  y )  /\  (
y  e.  B  ->  x  e.  y )
)  <->  ( A. y
( y  e.  A  ->  x  e.  y )  /\  A. y ( y  e.  B  ->  x  e.  y )
) )
2 elun 3489 . . . . . . 7  |-  ( y  e.  ( A  u.  B )  <->  ( y  e.  A  \/  y  e.  B ) )
32imbi1i 317 . . . . . 6  |-  ( ( y  e.  ( A  u.  B )  ->  x  e.  y )  <->  ( ( y  e.  A  \/  y  e.  B
)  ->  x  e.  y ) )
4 jaob 760 . . . . . 6  |-  ( ( ( y  e.  A  \/  y  e.  B
)  ->  x  e.  y )  <->  ( (
y  e.  A  ->  x  e.  y )  /\  ( y  e.  B  ->  x  e.  y ) ) )
53, 4bitri 242 . . . . 5  |-  ( ( y  e.  ( A  u.  B )  ->  x  e.  y )  <->  ( ( y  e.  A  ->  x  e.  y )  /\  ( y  e.  B  ->  x  e.  y ) ) )
65albii 1576 . . . 4  |-  ( A. y ( y  e.  ( A  u.  B
)  ->  x  e.  y )  <->  A. y
( ( y  e.  A  ->  x  e.  y )  /\  (
y  e.  B  ->  x  e.  y )
) )
7 vex 2960 . . . . . 6  |-  x  e. 
_V
87elint 4057 . . . . 5  |-  ( x  e.  |^| A  <->  A. y
( y  e.  A  ->  x  e.  y ) )
97elint 4057 . . . . 5  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
108, 9anbi12i 680 . . . 4  |-  ( ( x  e.  |^| A  /\  x  e.  |^| B
)  <->  ( A. y
( y  e.  A  ->  x  e.  y )  /\  A. y ( y  e.  B  ->  x  e.  y )
) )
111, 6, 103bitr4i 270 . . 3  |-  ( A. y ( y  e.  ( A  u.  B
)  ->  x  e.  y )  <->  ( x  e.  |^| A  /\  x  e.  |^| B ) )
127elint 4057 . . 3  |-  ( x  e.  |^| ( A  u.  B )  <->  A. y
( y  e.  ( A  u.  B )  ->  x  e.  y ) )
13 elin 3531 . . 3  |-  ( x  e.  ( |^| A  i^i  |^| B )  <->  ( x  e.  |^| A  /\  x  e.  |^| B ) )
1411, 12, 133bitr4i 270 . 2  |-  ( x  e.  |^| ( A  u.  B )  <->  x  e.  ( |^| A  i^i  |^| B ) )
1514eqriv 2434 1  |-  |^| ( A  u.  B )  =  ( |^| A  i^i  |^| B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726    u. cun 3319    i^i cin 3320   |^|cint 4051
This theorem is referenced by:  intunsn  4090  riinint  5127  fiin  7428  elfiun  7436  elrfi  26749
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-v 2959  df-un 3326  df-in 3328  df-int 4052
  Copyright terms: Public domain W3C validator