Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intunsn Structured version   Unicode version

Theorem intunsn 4081
 Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1
Assertion
Ref Expression
intunsn

Proof of Theorem intunsn
StepHypRef Expression
1 intun 4074 . 2
2 intunsn.1 . . . 4
32intsn 4078 . . 3
43ineq2i 3531 . 2
51, 4eqtri 2455 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wcel 1725  cvv 2948   cun 3310   cin 3311  csn 3806  cint 4042 This theorem is referenced by:  fiint  7375  incexclem  12608  heibor1lem  26509 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-un 3317  df-in 3319  df-sn 3812  df-pr 3813  df-int 4043
 Copyright terms: Public domain W3C validator