Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intvconlem1 Unicode version

Theorem intvconlem1 25806
Description: All the intervals of  RR are connected. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
intvconlem1  |-  ( I  e.  Intvl  ->  ( ( topGen `
 ran  (,) )t  I
)  e.  Con )

Proof of Theorem intvconlem1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3371 . . 3  |-  ( I  e.  ( ( ran 
(,)  u.  ( ran  (,] 
u.  ( ran  [,)  u. 
ran  [,] ) ) )  i^i  ~P RR )  <-> 
( I  e.  ( ran  (,)  u.  ( ran  (,]  u.  ( ran 
[,)  u.  ran  [,] )
) )  /\  I  e.  ~P RR ) )
2 elun 3329 . . . . 5  |-  ( I  e.  ( ran  (,)  u.  ( ran  (,]  u.  ( ran  [,)  u.  ran  [,] ) ) )  <->  ( I  e.  ran  (,)  \/  I  e.  ( ran  (,]  u.  ( ran  [,)  u.  ran  [,] ) ) ) )
3 bsi 25604 . . . . . . 7  |-  ( I  e.  ran  (,)  <->  E. x  e.  RR*  E. y  e. 
RR*  I  =  ( x (,) y ) )
4 icccon4 25805 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( topGen `  ran  (,) )t  (
x (,) y ) )  e.  Con )
54a1d 22 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x (,) y
)  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  ( x (,) y
) )  e.  Con ) )
6 eleq1 2356 . . . . . . . . . 10  |-  ( I  =  ( x (,) y )  ->  (
I  e.  ~P RR  <->  ( x (,) y )  e.  ~P RR ) )
7 oveq2 5882 . . . . . . . . . . 11  |-  ( I  =  ( x (,) y )  ->  (
( topGen `  ran  (,) )t  I
)  =  ( (
topGen `  ran  (,) )t  (
x (,) y ) ) )
87eleq1d 2362 . . . . . . . . . 10  |-  ( I  =  ( x (,) y )  ->  (
( ( topGen `  ran  (,) )t  I )  e.  Con  <->  (
( topGen `  ran  (,) )t  (
x (,) y ) )  e.  Con )
)
96, 8imbi12d 311 . . . . . . . . 9  |-  ( I  =  ( x (,) y )  ->  (
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) 
<->  ( ( x (,) y )  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  ( x (,) y ) )  e. 
Con ) ) )
105, 9syl5ibrcom 213 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
I  =  ( x (,) y )  -> 
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) ) )
1110rexlimivv 2685 . . . . . . 7  |-  ( E. x  e.  RR*  E. y  e.  RR*  I  =  ( x (,) y )  ->  ( I  e. 
~P RR  ->  (
( topGen `  ran  (,) )t  I
)  e.  Con )
)
123, 11sylbi 187 . . . . . 6  |-  ( I  e.  ran  (,)  ->  ( I  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  I )  e.  Con ) )
13 elun 3329 . . . . . . 7  |-  ( I  e.  ( ran  (,]  u.  ( ran  [,)  u.  ran  [,] ) )  <->  ( I  e.  ran  (,]  \/  I  e.  ( ran  [,)  u.  ran  [,] ) ) )
14 bsi4 25746 . . . . . . . . 9  |-  ( I  e.  ran  (,]  <->  E. x  e.  RR*  E. y  e. 
RR*  I  =  ( x (,] y ) )
15 ovex 5899 . . . . . . . . . . . . . 14  |-  ( x (,] y )  e. 
_V
1615elpw 3644 . . . . . . . . . . . . 13  |-  ( ( x (,] y )  e.  ~P RR  <->  ( x (,] y )  C_  RR )
17 ubioc1 10721 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  < 
y )  ->  y  e.  ( x (,] y
) )
18 ssel2 3188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x (,] y
)  C_  RR  /\  y  e.  ( x (,] y
) )  ->  y  e.  RR )
19 icccon3 25804 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  RR*  /\  y  e.  RR )  ->  (
( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
2019ex 423 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR*  ->  ( y  e.  RR  ->  (
( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
)
2120adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  RR  ->  ( ( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
)
2218, 21syl5com 26 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x (,] y
)  C_  RR  /\  y  e.  ( x (,] y
) )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) )
2322ex 423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x (,] y ) 
C_  RR  ->  ( y  e.  ( x (,] y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) ) )
2423com3l 75 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( x (,] y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x (,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) ) )
2517, 24syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  < 
y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x (,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) ) )
26253expia 1153 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x (,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) ) ) )
2726pm2.43a 45 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  ->  ( ( x (,] y
)  C_  RR  ->  ( ( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
) )
2827com3l 75 . . . . . . . . . . . . . 14  |-  ( x  <  y  ->  (
( x (,] y
)  C_  RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) ) )
29 xrlenlt 8906 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR*  /\  x  e.  RR* )  ->  (
y  <_  x  <->  -.  x  <  y ) )
3029ancoms 439 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <_  x  <->  -.  x  <  y ) )
31 ioc0 10719 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x (,] y
)  =  (/)  <->  y  <_  x ) )
32 retop 18286 . . . . . . . . . . . . . . . . . . . 20  |-  ( topGen ` 
ran  (,) )  e.  Top
33 rest0 16916 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
topGen `  ran  (,) )  e.  Top  ->  ( ( topGen `
 ran  (,) )t  (/) )  =  { (/) } )
34 singempcon 25696 . . . . . . . . . . . . . . . . . . . . 21  |-  { (/) }  e.  Con
3533, 34syl6eqel 2384 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
topGen `  ran  (,) )  e.  Top  ->  ( ( topGen `
 ran  (,) )t  (/) )  e. 
Con )
3632, 35ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( (
topGen `  ran  (,) )t  (/) )  e. 
Con
3736a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( x (,] y ) 
C_  RR  ->  ( (
topGen `  ran  (,) )t  (/) )  e. 
Con )
38 oveq2 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x (,] y )  =  (/)  ->  ( (
topGen `  ran  (,) )t  (
x (,] y ) )  =  ( (
topGen `  ran  (,) )t  (/) ) )
3938eleq1d 2362 . . . . . . . . . . . . . . . . . 18  |-  ( ( x (,] y )  =  (/)  ->  ( ( ( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con  <->  ( ( topGen `
 ran  (,) )t  (/) )  e. 
Con ) )
4037, 39syl5ibr 212 . . . . . . . . . . . . . . . . 17  |-  ( ( x (,] y )  =  (/)  ->  ( ( x (,] y ) 
C_  RR  ->  ( (
topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
)
4131, 40syl6bir 220 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <_  x  ->  ( ( x (,] y
)  C_  RR  ->  ( ( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
) )
4230, 41sylbird 226 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( -.  x  <  y  -> 
( ( x (,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) ) )
4342com3l 75 . . . . . . . . . . . . . 14  |-  ( -.  x  <  y  -> 
( ( x (,] y )  C_  RR  ->  ( ( x  e. 
RR*  /\  y  e.  RR* )  ->  ( ( topGen `
 ran  (,) )t  (
x (,] y ) )  e.  Con )
) )
4428, 43pm2.61i 156 . . . . . . . . . . . . 13  |-  ( ( x (,] y ) 
C_  RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
)
4516, 44sylbi 187 . . . . . . . . . . . 12  |-  ( ( x (,] y )  e.  ~P RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) )
4645com12 27 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x (,] y
)  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  ( x (,] y
) )  e.  Con ) )
47 eleq1 2356 . . . . . . . . . . . 12  |-  ( I  =  ( x (,] y )  ->  (
I  e.  ~P RR  <->  ( x (,] y )  e.  ~P RR ) )
48 oveq2 5882 . . . . . . . . . . . . 13  |-  ( I  =  ( x (,] y )  ->  (
( topGen `  ran  (,) )t  I
)  =  ( (
topGen `  ran  (,) )t  (
x (,] y ) ) )
4948eleq1d 2362 . . . . . . . . . . . 12  |-  ( I  =  ( x (,] y )  ->  (
( ( topGen `  ran  (,) )t  I )  e.  Con  <->  (
( topGen `  ran  (,) )t  (
x (,] y ) )  e.  Con )
)
5047, 49imbi12d 311 . . . . . . . . . . 11  |-  ( I  =  ( x (,] y )  ->  (
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) 
<->  ( ( x (,] y )  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  ( x (,] y ) )  e. 
Con ) ) )
5146, 50syl5ibrcom 213 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
I  =  ( x (,] y )  -> 
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) ) )
5251rexlimivv 2685 . . . . . . . . 9  |-  ( E. x  e.  RR*  E. y  e.  RR*  I  =  ( x (,] y )  ->  ( I  e. 
~P RR  ->  (
( topGen `  ran  (,) )t  I
)  e.  Con )
)
5314, 52sylbi 187 . . . . . . . 8  |-  ( I  e.  ran  (,]  ->  ( I  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  I )  e.  Con ) )
54 elun 3329 . . . . . . . . 9  |-  ( I  e.  ( ran  [,)  u. 
ran  [,] )  <->  ( I  e.  ran  [,)  \/  I  e.  ran  [,] ) )
55 bsi3 25744 . . . . . . . . . . 11  |-  ( I  e.  ran  [,)  <->  E. x  e.  RR*  E. y  e. 
RR*  I  =  ( x [,) y ) )
56 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( x [,) y )  e. 
_V
5756elpw 3644 . . . . . . . . . . . . . . 15  |-  ( ( x [,) y )  e.  ~P RR  <->  ( x [,) y )  C_  RR )
58 lbico1 10722 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  < 
y )  ->  x  e.  ( x [,) y
) )
59 ssel2 3188 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x [,) y
)  C_  RR  /\  x  e.  ( x [,) y
) )  ->  x  e.  RR )
60 icccon2 25803 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  RR  /\  y  e.  RR* )  -> 
( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con )
6160ex 423 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  RR  ->  (
y  e.  RR*  ->  ( ( topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
)
6261adantld 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) )
6359, 62syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x [,) y
)  C_  RR  /\  x  e.  ( x [,) y
) )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) )
6463ex 423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x [,) y ) 
C_  RR  ->  ( x  e.  ( x [,) y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) ) )
6564com3l 75 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( x [,) y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x [,) y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) ) )
6658, 65syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  < 
y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x [,) y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) ) )
67663expia 1153 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x [,) y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) ) ) )
6867pm2.43a 45 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <  y  ->  ( ( x [,) y
)  C_  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
) )
6968com3l 75 . . . . . . . . . . . . . . . 16  |-  ( x  <  y  ->  (
( x [,) y
)  C_  RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) ) )
70 ico0 10718 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x [,) y
)  =  (/)  <->  y  <_  x ) )
71 oveq2 5882 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x [,) y )  =  (/)  ->  ( (
topGen `  ran  (,) )t  (
x [,) y ) )  =  ( (
topGen `  ran  (,) )t  (/) ) )
7271, 36syl6eqel 2384 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x [,) y )  =  (/)  ->  ( (
topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
7372a1d 22 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x [,) y )  =  (/)  ->  ( ( x [,) y ) 
C_  RR  ->  ( (
topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
)
7470, 73syl6bir 220 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <_  x  ->  ( ( x [,) y
)  C_  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
) )
7530, 74sylbird 226 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( -.  x  <  y  -> 
( ( x [,) y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) ) )
7675com3l 75 . . . . . . . . . . . . . . . 16  |-  ( -.  x  <  y  -> 
( ( x [,) y )  C_  RR  ->  ( ( x  e. 
RR*  /\  y  e.  RR* )  ->  ( ( topGen `
 ran  (,) )t  (
x [,) y ) )  e.  Con )
) )
7769, 76pm2.61i 156 . . . . . . . . . . . . . . 15  |-  ( ( x [,) y ) 
C_  RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
)
7857, 77sylbi 187 . . . . . . . . . . . . . 14  |-  ( ( x [,) y )  e.  ~P RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) )
7978com12 27 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x [,) y
)  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  ( x [,) y
) )  e.  Con ) )
80 eleq1 2356 . . . . . . . . . . . . . 14  |-  ( I  =  ( x [,) y )  ->  (
I  e.  ~P RR  <->  ( x [,) y )  e.  ~P RR ) )
81 oveq2 5882 . . . . . . . . . . . . . . 15  |-  ( I  =  ( x [,) y )  ->  (
( topGen `  ran  (,) )t  I
)  =  ( (
topGen `  ran  (,) )t  (
x [,) y ) ) )
8281eleq1d 2362 . . . . . . . . . . . . . 14  |-  ( I  =  ( x [,) y )  ->  (
( ( topGen `  ran  (,) )t  I )  e.  Con  <->  (
( topGen `  ran  (,) )t  (
x [,) y ) )  e.  Con )
)
8380, 82imbi12d 311 . . . . . . . . . . . . 13  |-  ( I  =  ( x [,) y )  ->  (
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) 
<->  ( ( x [,) y )  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  ( x [,) y ) )  e. 
Con ) ) )
8479, 83syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
I  =  ( x [,) y )  -> 
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) ) )
8584rexlimivv 2685 . . . . . . . . . . 11  |-  ( E. x  e.  RR*  E. y  e.  RR*  I  =  ( x [,) y )  ->  ( I  e. 
~P RR  ->  (
( topGen `  ran  (,) )t  I
)  e.  Con )
)
8655, 85sylbi 187 . . . . . . . . . 10  |-  ( I  e.  ran  [,)  ->  ( I  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  I )  e.  Con ) )
87 bsi2 25742 . . . . . . . . . . 11  |-  ( I  e.  ran  [,]  <->  E. x  e.  RR*  E. y  e. 
RR*  I  =  ( x [,] y ) )
88 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( x [,] y )  e. 
_V
8988elpw 3644 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y )  e.  ~P RR  <->  ( x [,] y )  C_  RR )
90 icc0 10720 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x [,] y
)  =  (/)  <->  y  <  x ) )
91 oveq2 5882 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x [,] y )  =  (/)  ->  ( (
topGen `  ran  (,) )t  (
x [,] y ) )  =  ( (
topGen `  ran  (,) )t  (/) ) )
9291, 36syl6eqel 2384 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x [,] y )  =  (/)  ->  ( (
topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
9392a1d 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( x [,] y )  =  (/)  ->  ( ( x [,] y ) 
C_  RR  ->  ( (
topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
)
9490, 93syl6bir 220 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <  x  ->  ( ( x [,] y
)  C_  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
) )
9594com3l 75 . . . . . . . . . . . . . . . 16  |-  ( y  <  x  ->  (
( x [,] y
)  C_  RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
96 xrlenlt 8906 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <_  y  <->  -.  y  <  x ) )
97 ubicc2 10769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  y  e.  ( x [,] y
) )
98 lbicc2 10768 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  x  e.  ( x [,] y
) )
99 ssel2 3188 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x [,] y
)  C_  RR  /\  y  e.  ( x [,] y
) )  ->  y  e.  RR )
100 ssel2 3188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x [,] y
)  C_  RR  /\  x  e.  ( x [,] y
) )  ->  x  e.  RR )
101 iccconn 18351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con )
102101ex 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  RR  ->  (
y  e.  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
)
103100, 102syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x [,] y
)  C_  RR  /\  x  e.  ( x [,] y
) )  ->  (
y  e.  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
)
104103ex 423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x [,] y ) 
C_  RR  ->  ( x  e.  ( x [,] y )  ->  (
y  e.  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
) )
105104com3r 73 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  RR  ->  (
( x [,] y
)  C_  RR  ->  ( x  e.  ( x [,] y )  -> 
( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
10699, 105syl 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x [,] y
)  C_  RR  /\  y  e.  ( x [,] y
) )  ->  (
( x [,] y
)  C_  RR  ->  ( x  e.  ( x [,] y )  -> 
( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
107106ex 423 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x [,] y ) 
C_  RR  ->  ( y  e.  ( x [,] y )  ->  (
( x [,] y
)  C_  RR  ->  ( x  e.  ( x [,] y )  -> 
( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) ) )
108107pm2.43a 45 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x [,] y ) 
C_  RR  ->  ( y  e.  ( x [,] y )  ->  (
x  e.  ( x [,] y )  -> 
( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
109108com3l 75 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( x [,] y )  ->  (
x  e.  ( x [,] y )  -> 
( ( x [,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
110109a1dd 42 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( x [,] y )  ->  (
x  e.  ( x [,] y )  -> 
( ( x  e. 
RR*  /\  y  e.  RR* )  ->  ( (
x [,] y ) 
C_  RR  ->  ( (
topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
) ) )
11197, 98, 110sylc 56 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  (
( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x [,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
1121113expia 1153 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <_  y  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( x [,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) ) )
113112pm2.43a 45 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <_  y  ->  ( ( x [,] y
)  C_  RR  ->  ( ( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
) )
11496, 113sylbird 226 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( -.  y  <  x  -> 
( ( x [,] y )  C_  RR  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) ) )
115114com3l 75 . . . . . . . . . . . . . . . 16  |-  ( -.  y  <  x  -> 
( ( x [,] y )  C_  RR  ->  ( ( x  e. 
RR*  /\  y  e.  RR* )  ->  ( ( topGen `
 ran  (,) )t  (
x [,] y ) )  e.  Con )
) )
11695, 115pm2.61i 156 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y ) 
C_  RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
)
11789, 116sylbi 187 . . . . . . . . . . . . . 14  |-  ( ( x [,] y )  e.  ~P RR  ->  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) )
118117com12 27 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( x [,] y
)  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  ( x [,] y
) )  e.  Con ) )
119 eleq1 2356 . . . . . . . . . . . . . 14  |-  ( I  =  ( x [,] y )  ->  (
I  e.  ~P RR  <->  ( x [,] y )  e.  ~P RR ) )
120 oveq2 5882 . . . . . . . . . . . . . . 15  |-  ( I  =  ( x [,] y )  ->  (
( topGen `  ran  (,) )t  I
)  =  ( (
topGen `  ran  (,) )t  (
x [,] y ) ) )
121120eleq1d 2362 . . . . . . . . . . . . . 14  |-  ( I  =  ( x [,] y )  ->  (
( ( topGen `  ran  (,) )t  I )  e.  Con  <->  (
( topGen `  ran  (,) )t  (
x [,] y ) )  e.  Con )
)
122119, 121imbi12d 311 . . . . . . . . . . . . 13  |-  ( I  =  ( x [,] y )  ->  (
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) 
<->  ( ( x [,] y )  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  ( x [,] y ) )  e. 
Con ) ) )
123118, 122syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
I  =  ( x [,] y )  -> 
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) ) )
124123rexlimivv 2685 . . . . . . . . . . 11  |-  ( E. x  e.  RR*  E. y  e.  RR*  I  =  ( x [,] y )  ->  ( I  e. 
~P RR  ->  (
( topGen `  ran  (,) )t  I
)  e.  Con )
)
12587, 124sylbi 187 . . . . . . . . . 10  |-  ( I  e.  ran  [,]  ->  ( I  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  I )  e.  Con ) )
12686, 125jaoi 368 . . . . . . . . 9  |-  ( ( I  e.  ran  [,)  \/  I  e.  ran  [,] )  ->  ( I  e. 
~P RR  ->  (
( topGen `  ran  (,) )t  I
)  e.  Con )
)
12754, 126sylbi 187 . . . . . . . 8  |-  ( I  e.  ( ran  [,)  u. 
ran  [,] )  ->  (
I  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  I )  e.  Con ) )
12853, 127jaoi 368 . . . . . . 7  |-  ( ( I  e.  ran  (,]  \/  I  e.  ( ran 
[,)  u.  ran  [,] )
)  ->  ( I  e.  ~P RR  ->  (
( topGen `  ran  (,) )t  I
)  e.  Con )
)
12913, 128sylbi 187 . . . . . 6  |-  ( I  e.  ( ran  (,]  u.  ( ran  [,)  u.  ran  [,] ) )  -> 
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) )
13012, 129jaoi 368 . . . . 5  |-  ( ( I  e.  ran  (,)  \/  I  e.  ( ran 
(,]  u.  ( ran  [,) 
u.  ran  [,] )
) )  ->  (
I  e.  ~P RR  ->  ( ( topGen `  ran  (,) )t  I )  e.  Con ) )
1312, 130sylbi 187 . . . 4  |-  ( I  e.  ( ran  (,)  u.  ( ran  (,]  u.  ( ran  [,)  u.  ran  [,] ) ) )  -> 
( I  e.  ~P RR  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con ) )
132131imp 418 . . 3  |-  ( ( I  e.  ( ran 
(,)  u.  ( ran  (,] 
u.  ( ran  [,)  u. 
ran  [,] ) ) )  /\  I  e.  ~P RR )  ->  ( (
topGen `  ran  (,) )t  I
)  e.  Con )
1331, 132sylbi 187 . 2  |-  ( I  e.  ( ( ran 
(,)  u.  ( ran  (,] 
u.  ( ran  [,)  u. 
ran  [,] ) ) )  i^i  ~P RR )  ->  ( ( topGen ` 
ran  (,) )t  I )  e.  Con )
134 df-intvl 25800 . 2  |-  Intvl  =  ( ( ran  (,)  u.  ( ran  (,]  u.  ( ran  [,)  u.  ran  [,] ) ) )  i^i 
~P RR )
135133, 134eleq2s 2388 1  |-  ( I  e.  Intvl  ->  ( ( topGen `
 ran  (,) )t  I
)  e.  Con )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   class class class wbr 4039   ran crn 4706   ` cfv 5271  (class class class)co 5874   RRcr 8752   RR*cxr 8882    < clt 8883    <_ cle 8884   (,)cioo 10672   (,]cioc 10673   [,)cico 10674   [,]cicc 10675   ↾t crest 13341   topGenctg 13358   Topctop 16647   Conccon 17153   Intvlcintvl 25799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cld 16772  df-con 17154  df-intvl 25800
  Copyright terms: Public domain W3C validator