MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intwun Unicode version

Theorem intwun 8373
Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
intwun  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e. WUni )

Proof of Theorem intwun
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . . 6  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A  C_ WUni )
21sselda 3193 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  u  e. WUni )
3 wuntr 8343 . . . . 5  |-  ( u  e. WUni  ->  Tr  u )
42, 3syl 15 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  Tr  u )
54ralrimiva 2639 . . 3  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A. u  e.  A  Tr  u
)
6 trint 4144 . . 3  |-  ( A. u  e.  A  Tr  u  ->  Tr  |^| A )
75, 6syl 15 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  Tr  |^| A )
82wun0 8356 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  (/)  e.  u
)
98ralrimiva 2639 . . . 4  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A. u  e.  A  (/)  e.  u
)
10 0ex 4166 . . . . 5  |-  (/)  e.  _V
1110elint2 3885 . . . 4  |-  ( (/)  e.  |^| A  <->  A. u  e.  A  (/)  e.  u
)
129, 11sylibr 203 . . 3  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  (/)  e.  |^| A )
13 ne0i 3474 . . 3  |-  ( (/)  e.  |^| A  ->  |^| A  =/=  (/) )
1412, 13syl 15 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  =/=  (/) )
152adantlr 695 . . . . . . 7  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  u  e. WUni )
16 intss1 3893 . . . . . . . . . 10  |-  ( u  e.  A  ->  |^| A  C_  u )
1716adantl 452 . . . . . . . . 9  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  ->  |^| A  C_  u )
1817sselda 3193 . . . . . . . 8  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  u  e.  A )  /\  x  e.  |^| A
)  ->  x  e.  u )
1918an32s 779 . . . . . . 7  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  x  e.  u )
2015, 19wununi 8344 . . . . . 6  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  U. x  e.  u )
2120ralrimiva 2639 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. u  e.  A  U. x  e.  u
)
22 vex 2804 . . . . . . 7  |-  x  e. 
_V
2322uniex 4532 . . . . . 6  |-  U. x  e.  _V
2423elint2 3885 . . . . 5  |-  ( U. x  e.  |^| A  <->  A. u  e.  A  U. x  e.  u )
2521, 24sylibr 203 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  U. x  e.  |^| A
)
2615, 19wunpw 8345 . . . . . 6  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  ~P x  e.  u )
2726ralrimiva 2639 . . . . 5  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. u  e.  A  ~P x  e.  u
)
2822pwex 4209 . . . . . 6  |-  ~P x  e.  _V
2928elint2 3885 . . . . 5  |-  ( ~P x  e.  |^| A  <->  A. u  e.  A  ~P x  e.  u )
3027, 29sylibr 203 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  ~P x  e.  |^| A
)
3115adantlr 695 . . . . . . . 8  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  u  e. WUni )
3219adantlr 695 . . . . . . . 8  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  x  e.  u )
3316adantl 452 . . . . . . . . . 10  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  ->  |^| A  C_  u )
3433sselda 3193 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  u  e.  A
)  /\  y  e.  |^| A )  ->  y  e.  u )
3534an32s 779 . . . . . . . 8  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  y  e.  u )
3631, 32, 35wunpr 8347 . . . . . . 7  |-  ( ( ( ( ( A 
C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  /\  u  e.  A )  ->  { x ,  y }  e.  u )
3736ralrimiva 2639 . . . . . 6  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  ->  A. u  e.  A  { x ,  y }  e.  u )
38 prex 4233 . . . . . . 7  |-  { x ,  y }  e.  _V
3938elint2 3885 . . . . . 6  |-  ( { x ,  y }  e.  |^| A  <->  A. u  e.  A  { x ,  y }  e.  u )
4037, 39sylibr 203 . . . . 5  |-  ( ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  /\  y  e.  |^| A )  ->  { x ,  y }  e.  |^| A )
4140ralrimiva 2639 . . . 4  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  ->  A. y  e.  |^| A { x ,  y }  e.  |^| A
)
4225, 30, 413jca 1132 . . 3  |-  ( ( ( A  C_ WUni  /\  A  =/=  (/) )  /\  x  e.  |^| A )  -> 
( U. x  e. 
|^| A  /\  ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A
) )
4342ralrimiva 2639 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A. x  e.  |^| A ( U. x  e.  |^| A  /\  ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A
) )
44 simpr 447 . . . 4  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  A  =/=  (/) )
45 intex 4183 . . . 4  |-  ( A  =/=  (/)  <->  |^| A  e.  _V )
4644, 45sylib 188 . . 3  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e.  _V )
47 iswun 8342 . . 3  |-  ( |^| A  e.  _V  ->  (
|^| A  e. WUni  <->  ( Tr  |^| A  /\  |^| A  =/=  (/)  /\  A. x  e.  |^| A ( U. x  e.  |^| A  /\  ~P x  e.  |^| A  /\  A. y  e.  |^| A { x ,  y }  e.  |^| A
) ) ) )
4846, 47syl 15 . 2  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  ( |^| A  e. WUni  <->  ( Tr  |^| A  /\  |^| A  =/=  (/)  /\  A. x  e.  |^| A ( U. x  e.  |^| A  /\  ~P x  e. 
|^| A  /\  A. y  e.  |^| A {
x ,  y }  e.  |^| A ) ) ) )
497, 14, 43, 48mpbir3and 1135 1  |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e. WUni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {cpr 3654   U.cuni 3843   |^|cint 3878   Tr wtr 4129  WUnicwun 8338
This theorem is referenced by:  wunccl  8382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-pw 3640  df-sn 3659  df-pr 3660  df-uni 3844  df-int 3879  df-tr 4130  df-wun 8340
  Copyright terms: Public domain W3C validator