MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inundif Structured version   Unicode version

Theorem inundif 3698
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inundif  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A

Proof of Theorem inundif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3522 . . . 4  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 eldif 3322 . . . 4  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
31, 2orbi12i 508 . . 3  |-  ( ( x  e.  ( A  i^i  B )  \/  x  e.  ( A 
\  B ) )  <-> 
( ( x  e.  A  /\  x  e.  B )  \/  (
x  e.  A  /\  -.  x  e.  B
) ) )
4 pm4.42 927 . . 3  |-  ( x  e.  A  <->  ( (
x  e.  A  /\  x  e.  B )  \/  ( x  e.  A  /\  -.  x  e.  B
) ) )
53, 4bitr4i 244 . 2  |-  ( ( x  e.  ( A  i^i  B )  \/  x  e.  ( A 
\  B ) )  <-> 
x  e.  A )
65uneqri 3481 1  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3309    u. cun 3310    i^i cin 3311
This theorem is referenced by:  resasplit  5605  fresaun  5606  fresaunres2  5607  ixpfi2  7397  hashun3  11650  prmreclem2  13277  sylow2a  15245  ablfac1eu  15623  basdif0  17010  neitr  17236  cmpfi  17463  ptbasfi  17605  ptcnplem  17645  fin1aufil  17956  ismbl2  19415  volinun  19432  voliunlem2  19437  mbfeqalem  19526  itg2cnlem2  19646  dvres2lem  19789  imadifxp  24030  partfun  24079  measun  24557  measunl  24562  sibfof  24646  probdif  24670  mvdco  27346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-dif 3315  df-un 3317  df-in 3319
  Copyright terms: Public domain W3C validator