MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inuni Unicode version

Theorem inuni 4173
Description: The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem inuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eluni2 3831 . . . . 5  |-  ( z  e.  U. A  <->  E. y  e.  A  z  e.  y )
21anbi1i 676 . . . 4  |-  ( ( z  e.  U. A  /\  z  e.  B
)  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B
) )
3 elin 3358 . . . 4  |-  ( z  e.  ( U. A  i^i  B )  <->  ( z  e.  U. A  /\  z  e.  B ) )
4 ancom 437 . . . . . . . 8  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  ( E. y  e.  A  x  =  ( y  i^i 
B )  /\  z  e.  x ) )
5 r19.41v 2693 . . . . . . . 8  |-  ( E. y  e.  A  ( x  =  ( y  i^i  B )  /\  z  e.  x )  <->  ( E. y  e.  A  x  =  ( y  i^i  B )  /\  z  e.  x ) )
64, 5bitr4i 243 . . . . . . 7  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  E. y  e.  A  ( x  =  ( y  i^i 
B )  /\  z  e.  x ) )
76exbii 1569 . . . . . 6  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
8 rexcom4 2807 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
97, 8bitr4i 243 . . . . 5  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. y  e.  A  E. x
( x  =  ( y  i^i  B )  /\  z  e.  x
) )
10 vex 2791 . . . . . . . . . 10  |-  y  e. 
_V
1110inex1 4155 . . . . . . . . 9  |-  ( y  i^i  B )  e. 
_V
12 eleq2 2344 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
B )  ->  (
z  e.  x  <->  z  e.  ( y  i^i  B
) ) )
1311, 12ceqsexv 2823 . . . . . . . 8  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  z  e.  ( y  i^i  B
) )
14 elin 3358 . . . . . . . 8  |-  ( z  e.  ( y  i^i 
B )  <->  ( z  e.  y  /\  z  e.  B ) )
1513, 14bitri 240 . . . . . . 7  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( z  e.  y  /\  z  e.  B ) )
1615rexbii 2568 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. y  e.  A  ( z  e.  y  /\  z  e.  B ) )
17 r19.41v 2693 . . . . . 6  |-  ( E. y  e.  A  ( z  e.  y  /\  z  e.  B )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B )
)
1816, 17bitri 240 . . . . 5  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
199, 18bitri 240 . . . 4  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
202, 3, 193bitr4i 268 . . 3  |-  ( z  e.  ( U. A  i^i  B )  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
21 eluniab 3839 . . 3  |-  ( z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
2220, 21bitr4i 243 . 2  |-  ( z  e.  ( U. A  i^i  B )  <->  z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i 
B ) } )
2322eqriv 2280 1  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544    i^i cin 3151   U.cuni 3827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790  df-in 3159  df-uni 3828
  Copyright terms: Public domain W3C validator