MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inuni Structured version   Unicode version

Theorem inuni 4364
Description: The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem inuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eluni2 4021 . . . . 5  |-  ( z  e.  U. A  <->  E. y  e.  A  z  e.  y )
21anbi1i 678 . . . 4  |-  ( ( z  e.  U. A  /\  z  e.  B
)  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B
) )
3 elin 3532 . . . 4  |-  ( z  e.  ( U. A  i^i  B )  <->  ( z  e.  U. A  /\  z  e.  B ) )
4 ancom 439 . . . . . . . 8  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  ( E. y  e.  A  x  =  ( y  i^i 
B )  /\  z  e.  x ) )
5 r19.41v 2863 . . . . . . . 8  |-  ( E. y  e.  A  ( x  =  ( y  i^i  B )  /\  z  e.  x )  <->  ( E. y  e.  A  x  =  ( y  i^i  B )  /\  z  e.  x ) )
64, 5bitr4i 245 . . . . . . 7  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  E. y  e.  A  ( x  =  ( y  i^i 
B )  /\  z  e.  x ) )
76exbii 1593 . . . . . 6  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
8 rexcom4 2977 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
97, 8bitr4i 245 . . . . 5  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. y  e.  A  E. x
( x  =  ( y  i^i  B )  /\  z  e.  x
) )
10 vex 2961 . . . . . . . . . 10  |-  y  e. 
_V
1110inex1 4346 . . . . . . . . 9  |-  ( y  i^i  B )  e. 
_V
12 eleq2 2499 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
B )  ->  (
z  e.  x  <->  z  e.  ( y  i^i  B
) ) )
1311, 12ceqsexv 2993 . . . . . . . 8  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  z  e.  ( y  i^i  B
) )
14 elin 3532 . . . . . . . 8  |-  ( z  e.  ( y  i^i 
B )  <->  ( z  e.  y  /\  z  e.  B ) )
1513, 14bitri 242 . . . . . . 7  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( z  e.  y  /\  z  e.  B ) )
1615rexbii 2732 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. y  e.  A  ( z  e.  y  /\  z  e.  B ) )
17 r19.41v 2863 . . . . . 6  |-  ( E. y  e.  A  ( z  e.  y  /\  z  e.  B )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B )
)
1816, 17bitri 242 . . . . 5  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
199, 18bitri 242 . . . 4  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
202, 3, 193bitr4i 270 . . 3  |-  ( z  e.  ( U. A  i^i  B )  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
21 eluniab 4029 . . 3  |-  ( z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
2220, 21bitr4i 245 . 2  |-  ( z  e.  ( U. A  i^i  B )  <->  z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i 
B ) } )
2322eqriv 2435 1  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424   E.wrex 2708    i^i cin 3321   U.cuni 4017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-v 2960  df-in 3329  df-uni 4018
  Copyright terms: Public domain W3C validator