MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfun Unicode version

Theorem invfun 13666
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
invfun  |-  ( ph  ->  Fun  ( X N Y ) )

Proof of Theorem invfun
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . 4  |-  B  =  ( Base `  C
)
2 invfval.n . . . 4  |-  N  =  (Inv `  C )
3 invfval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 invfval.x . . . 4  |-  ( ph  ->  X  e.  B )
5 invfval.y . . . 4  |-  ( ph  ->  Y  e.  B )
6 eqid 2283 . . . 4  |-  (  Hom  `  C )  =  (  Hom  `  C )
71, 2, 3, 4, 5, 6invss 13663 . . 3  |-  ( ph  ->  ( X N Y )  C_  ( ( X (  Hom  `  C
) Y )  X.  ( Y (  Hom  `  C ) X ) ) )
8 relxp 4794 . . 3  |-  Rel  (
( X (  Hom  `  C ) Y )  X.  ( Y (  Hom  `  C ) X ) )
9 relss 4775 . . 3  |-  ( ( X N Y ) 
C_  ( ( X (  Hom  `  C
) Y )  X.  ( Y (  Hom  `  C ) X ) )  ->  ( Rel  ( ( X (  Hom  `  C ) Y )  X.  ( Y (  Hom  `  C
) X ) )  ->  Rel  ( X N Y ) ) )
107, 8, 9ee10 1366 . 2  |-  ( ph  ->  Rel  ( X N Y ) )
11 eqid 2283 . . . . . 6  |-  (Sect `  C )  =  (Sect `  C )
123adantr 451 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  C  e.  Cat )
135adantr 451 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  Y  e.  B
)
144adantr 451 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  X  e.  B
)
151, 2, 3, 4, 5, 11isinv 13662 . . . . . . . 8  |-  ( ph  ->  ( f ( X N Y ) g  <-> 
( f ( X (Sect `  C ) Y ) g  /\  g ( Y (Sect `  C ) X ) f ) ) )
1615simplbda 607 . . . . . . 7  |-  ( (
ph  /\  f ( X N Y ) g )  ->  g ( Y (Sect `  C ) X ) f )
1716adantrr 697 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  g ( Y (Sect `  C ) X ) f )
181, 2, 3, 4, 5, 11isinv 13662 . . . . . . . 8  |-  ( ph  ->  ( f ( X N Y ) h  <-> 
( f ( X (Sect `  C ) Y ) h  /\  h ( Y (Sect `  C ) X ) f ) ) )
1918simprbda 606 . . . . . . 7  |-  ( (
ph  /\  f ( X N Y ) h )  ->  f ( X (Sect `  C ) Y ) h )
2019adantrl 696 . . . . . 6  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  f ( X (Sect `  C ) Y ) h )
211, 11, 12, 13, 14, 17, 20sectcan 13658 . . . . 5  |-  ( (
ph  /\  ( f
( X N Y ) g  /\  f
( X N Y ) h ) )  ->  g  =  h )
2221ex 423 . . . 4  |-  ( ph  ->  ( ( f ( X N Y ) g  /\  f ( X N Y ) h )  ->  g  =  h ) )
2322alrimiv 1617 . . 3  |-  ( ph  ->  A. h ( ( f ( X N Y ) g  /\  f ( X N Y ) h )  ->  g  =  h ) )
2423alrimivv 1618 . 2  |-  ( ph  ->  A. f A. g A. h ( ( f ( X N Y ) g  /\  f
( X N Y ) h )  -> 
g  =  h ) )
25 dffun2 5265 . 2  |-  ( Fun  ( X N Y )  <->  ( Rel  ( X N Y )  /\  A. f A. g A. h ( ( f ( X N Y ) g  /\  f
( X N Y ) h )  -> 
g  =  h ) ) )
2610, 24, 25sylanbrc 645 1  |-  ( ph  ->  Fun  ( X N Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684    C_ wss 3152   class class class wbr 4023    X. cxp 4687   Rel wrel 4694   Fun wfun 5249   ` cfv 5255  (class class class)co 5858   Basecbs 13148    Hom chom 13219   Catccat 13566  Sectcsect 13647  Invcinv 13648
This theorem is referenced by:  inviso1  13668  invf  13670  invco  13673  funciso  13748  ffthiso  13803  fuciso  13849  setciso  13923  catciso  13939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-cat 13570  df-cid 13571  df-sect 13650  df-inv 13651
  Copyright terms: Public domain W3C validator