Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inxp Unicode version

Theorem inxp 4818
 Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
inxp

Proof of Theorem inxp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopab 4816 . . 3
2 an4 797 . . . . 5
3 elin 3358 . . . . . 6
4 elin 3358 . . . . . 6
53, 4anbi12i 678 . . . . 5
62, 5bitr4i 243 . . . 4
76opabbii 4083 . . 3
81, 7eqtri 2303 . 2
9 df-xp 4695 . . 3
10 df-xp 4695 . . 3
119, 10ineq12i 3368 . 2
12 df-xp 4695 . 2
138, 11, 123eqtr4i 2313 1
 Colors of variables: wff set class Syntax hints:   wa 358   wceq 1623   wcel 1684   cin 3151  copab 4076   cxp 4687 This theorem is referenced by:  xpindi  4819  xpindir  4820  dmxpin  4899  xpssres  4989  xpdisj1  5101  xpdisj2  5102  imainrect  5119  curry1  6210  curry2  6213  fpar  6222  marypha1lem  7186  fpwwe2lem13  8264  hashxplem  11385  sscres  13700  gsumxp  15227  pjfval  16606  pjpm  16608  txbas  17262  txcls  17299  txrest  17325  metreslem  17926  ressxms  18071  ressms  18072  xpima  23202  mbfmcst  23564  0rrv  23654  domrancur1b  25200  domrancur1c  25202  selsubf3  25991 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696
 Copyright terms: Public domain W3C validator