MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Unicode version

Theorem iocopnst 18926
Description: A half-open interval ending at  B is open in the closed interval from  A to  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
Assertion
Ref Expression
iocopnst  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )

Proof of Theorem iocopnst
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iooretop 18761 . . . . 5  |-  ( C (,) ( B  + 
1 ) )  e.  ( topGen `  ran  (,) )
2 simp1 957 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  e.  RR ) )
4 simp2 958 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v )
54a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  C  <  v ) )
6 ltp1 9812 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  B  <  ( B  +  1 ) )
76adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  B  <  ( B  +  1 ) )
8 peano2re 9203 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
98adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( B  +  1 )  e.  RR )
10 lelttr 9129 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
11103expa 1153 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  RR  /\  B  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1211ancom1s 781 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( v  <_  B  /\  B  <  ( B  +  1 ) )  ->  v  <  ( B  +  1 ) ) )
1312ancomsd 441 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  RR  /\  v  e.  RR )  /\  ( B  + 
1 )  e.  RR )  ->  ( ( B  <  ( B  + 
1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
149, 13mpdan 650 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( ( B  < 
( B  +  1 )  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
157, 14mpand 657 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  v  e.  RR )  ->  ( v  <_  B  ->  v  <  ( B  +  1 ) ) )
1615impr 603 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  v  <_  B )
)  ->  v  <  ( B  +  1 ) )
17163adantr2 1117 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  v  <  ( B  +  1 ) )
1817ex 424 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  -> 
v  <  ( B  +  1 ) ) )
1918ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <  ( B  +  1 ) ) )
203, 5, 193jcad 1135 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) ) ) )
21 rexr 9094 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  B  e.  RR* )
22 elico2 10938 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2321, 22sylan2 461 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
2423biimpa 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
25 lelttr 9129 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <  v
) )
26 ltle 9127 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v )
)
27263adant2 976 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  ( A  <  v  ->  A  <_  v ) )
2825, 27syld 42 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  v  e.  RR )  ->  (
( A  <_  C  /\  C  <  v )  ->  A  <_  v
) )
29283expa 1153 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  ->  ( ( A  <_  C  /\  C  <  v )  ->  A  <_  v ) )
3029imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  ( A  <_  C  /\  C  <  v ) )  ->  A  <_  v )
3130an4s 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v ) )  ->  A  <_  v
)
32313adantr3 1118 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C )  /\  (
v  e.  RR  /\  C  <  v  /\  v  <_  B ) )  ->  A  <_  v )
3332ex 424 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  C  e.  RR )  /\  A  <_  C
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3433anasss 629 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C )
)  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
35343adantr3 1118 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B ) )  ->  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3635adantlr 696 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
3724, 36syldan 457 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  A  <_  v ) )
38 simp3 959 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B )
3938a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  v  <_  B ) )
403, 37, 393jcad 1135 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
4120, 40jcad 520 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  ->  (
( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
42 simpl1 960 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  e.  RR )
43 simpl2 961 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  C  <  v
)
44 simpr3 965 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  <_  B
)
4542, 43, 443jca 1134 . . . . . . . 8  |-  ( ( ( v  e.  RR  /\  C  <  v  /\  v  <  ( B  + 
1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) )
4641, 45impbid1 195 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  RR  /\  C  <  v  /\  v  <_  B )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
4724simp1d 969 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
48 rexr 9094 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
4947, 48syl 16 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
50 simplr 732 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR )
51 elioc2 10937 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  B  e.  RR )  ->  (
v  e.  ( C (,] B )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
5249, 50, 51syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <_  B ) ) )
53 elin 3498 . . . . . . . 8  |-  ( v  e.  ( ( C (,) ( B  + 
1 ) )  i^i  ( A [,] B
) )  <->  ( v  e.  ( C (,) ( B  +  1 ) )  /\  v  e.  ( A [,] B
) ) )
54 rexr 9094 . . . . . . . . . . . 12  |-  ( ( B  +  1 )  e.  RR  ->  ( B  +  1 )  e.  RR* )
558, 54syl 16 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR* )
5655ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( B  +  1 )  e. 
RR* )
57 elioo2 10921 . . . . . . . . . 10  |-  ( ( C  e.  RR*  /\  ( B  +  1 )  e.  RR* )  ->  (
v  e.  ( C (,) ( B  + 
1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
5849, 56, 57syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,) ( B  +  1 ) )  <->  ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) ) ) )
59 elicc2 10939 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( v  e.  ( A [,] B )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
6059adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( A [,] B
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <_  B ) ) )
6158, 60anbi12d 692 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( (
v  e.  ( C (,) ( B  + 
1 ) )  /\  v  e.  ( A [,] B ) )  <->  ( (
v  e.  RR  /\  C  <  v  /\  v  <  ( B  +  1 ) )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6253, 61syl5bb 249 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) )  <-> 
( ( v  e.  RR  /\  C  < 
v  /\  v  <  ( B  +  1 ) )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6346, 52, 623bitr4d 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( v  e.  ( C (,] B
)  <->  v  e.  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6463eqrdv 2410 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) )
65 ineq1 3503 . . . . . . 7  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
v  i^i  ( A [,] B ) )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )
6665eqeq2d 2423 . . . . . 6  |-  ( v  =  ( C (,) ( B  +  1
) )  ->  (
( C (,] B
)  =  ( v  i^i  ( A [,] B ) )  <->  ( C (,] B )  =  ( ( C (,) ( B  +  1 ) )  i^i  ( A [,] B ) ) ) )
6766rspcev 3020 . . . . 5  |-  ( ( ( C (,) ( B  +  1 ) )  e.  ( topGen ` 
ran  (,) )  /\  ( C (,] B )  =  ( ( C (,) ( B  +  1
) )  i^i  ( A [,] B ) ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
681, 64, 67sylancr 645 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
69 retop 18756 . . . . 5  |-  ( topGen ` 
ran  (,) )  e.  Top
70 ovex 6073 . . . . 5  |-  ( A [,] B )  e. 
_V
71 elrest 13618 . . . . 5  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( C (,] B
)  e.  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `
 ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) ) )
7269, 70, 71mp2an 654 . . . 4  |-  ( ( C (,] B )  e.  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `  ran  (,) )
( C (,] B
)  =  ( v  i^i  ( A [,] B ) ) )
7368, 72sylibr 204 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
74 iccssre 10956 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
7574adantr 452 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( A [,] B )  C_  RR )
76 eqid 2412 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
77 iocopnst.1 . . . . 5  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
7876, 77resubmet 18794 . . . 4  |-  ( ( A [,] B ) 
C_  RR  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7975, 78syl 16 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
8073, 79eleqtrrd 2489 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,) B ) )  ->  ( C (,] B )  e.  J
)
8180ex 424 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,) B )  ->  ( C (,] B )  e.  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   E.wrex 2675   _Vcvv 2924    i^i cin 3287    C_ wss 3288   class class class wbr 4180    X. cxp 4843   ran crn 4846    |` cres 4847    o. ccom 4849   ` cfv 5421  (class class class)co 6048   RRcr 8953   1c1 8955    + caddc 8957   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255   (,)cioo 10880   (,]cioc 10881   [,)cico 10882   [,]cicc 10883   abscabs 12002   ↾t crest 13611   topGenctg 13628   MetOpencmopn 16654   Topctop 16921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ioc 10885  df-ico 10886  df-icc 10887  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-rest 13613  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-top 16926  df-bases 16928  df-topon 16929
  Copyright terms: Public domain W3C validator