MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioodisj Unicode version

Theorem ioodisj 10959
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
ioodisj  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )

Proof of Theorem ioodisj
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 736 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  B  e.  RR* )
2 iooss1 10884 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  <_  C )  ->  ( C (,) D )  C_  ( B (,) D ) )
31, 2sylancom 649 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( C (,) D
)  C_  ( B (,) D ) )
4 ioossicc 10929 . . . . 5  |-  ( B (,) D )  C_  ( B [,] D )
53, 4syl6ss 3304 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( C (,) D
)  C_  ( B [,] D ) )
6 sslin 3511 . . . 4  |-  ( ( C (,) D ) 
C_  ( B [,] D )  ->  (
( A (,) B
)  i^i  ( C (,) D ) )  C_  ( ( A (,) B )  i^i  ( B [,] D ) ) )
75, 6syl 16 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) ) 
C_  ( ( A (,) B )  i^i  ( B [,] D
) ) )
8 simplll 735 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  A  e.  RR* )
9 simplrr 738 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  D  e.  RR* )
10 df-ioo 10853 . . . . 5  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
11 df-icc 10856 . . . . 5  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
12 xrlenlt 9077 . . . . 5  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B  <_  w  <->  -.  w  <  B ) )
1310, 11, 12ixxdisj 10864 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
( A (,) B
)  i^i  ( B [,] D ) )  =  (/) )
148, 1, 9, 13syl3anc 1184 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( B [,] D ) )  =  (/) )
157, 14sseqtrd 3328 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) ) 
C_  (/) )
16 ss0 3602 . 2  |-  ( ( ( A (,) B
)  i^i  ( C (,) D ) )  C_  (/) 
->  ( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
1715, 16syl 16 1  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    i^i cin 3263    C_ wss 3264   (/)c0 3572   class class class wbr 4154  (class class class)co 6021   RR*cxr 9053    < clt 9054    <_ cle 9055   (,)cioo 10849   [,]cicc 10852
This theorem is referenced by:  reconnlem1  18729  dyaddisjlem  19355  itgsplitioo  19597
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-pre-lttri 8998  ax-pre-lttrn 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-ioo 10853  df-icc 10856
  Copyright terms: Public domain W3C validator