MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem4 Unicode version

Theorem ioombl1lem4 18918
Description: Lemma for ioombl1 18919. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ioombl1.b  |-  B  =  ( A (,)  +oo )
ioombl1.a  |-  ( ph  ->  A  e.  RR )
ioombl1.e  |-  ( ph  ->  E  C_  RR )
ioombl1.v  |-  ( ph  ->  ( vol * `  E )  e.  RR )
ioombl1.c  |-  ( ph  ->  C  e.  RR+ )
ioombl1.s  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ioombl1.t  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ioombl1.u  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ioombl1.f1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ioombl1.f2  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
ioombl1.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
ioombl1.p  |-  P  =  ( 1st `  ( F `  n )
)
ioombl1.q  |-  Q  =  ( 2nd `  ( F `  n )
)
ioombl1.g  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
ioombl1.h  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
Assertion
Ref Expression
ioombl1lem4  |-  ( ph  ->  ( ( vol * `  ( E  i^i  B
) )  +  ( vol * `  ( E  \  B ) ) )  <_  ( ( vol * `  E )  +  C ) )
Distinct variable groups:    B, n    C, n    n, E    n, F    n, G    n, H    ph, n    S, n
Allowed substitution hints:    A( n)    P( n)    Q( n)    T( n)    U( n)

Proof of Theorem ioombl1lem4
Dummy variables  x  j  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3389 . . . . 5  |-  ( E  i^i  B )  C_  E
21a1i 10 . . . 4  |-  ( ph  ->  ( E  i^i  B
)  C_  E )
3 ioombl1.e . . . 4  |-  ( ph  ->  E  C_  RR )
4 ioombl1.v . . . 4  |-  ( ph  ->  ( vol * `  E )  e.  RR )
5 ovolsscl 18845 . . . 4  |-  ( ( ( E  i^i  B
)  C_  E  /\  E  C_  RR  /\  ( vol * `  E )  e.  RR )  -> 
( vol * `  ( E  i^i  B ) )  e.  RR )
62, 3, 4, 5syl3anc 1182 . . 3  |-  ( ph  ->  ( vol * `  ( E  i^i  B ) )  e.  RR )
7 difss 3303 . . . . 5  |-  ( E 
\  B )  C_  E
87a1i 10 . . . 4  |-  ( ph  ->  ( E  \  B
)  C_  E )
9 ovolsscl 18845 . . . 4  |-  ( ( ( E  \  B
)  C_  E  /\  E  C_  RR  /\  ( vol * `  E )  e.  RR )  -> 
( vol * `  ( E  \  B ) )  e.  RR )
108, 3, 4, 9syl3anc 1182 . . 3  |-  ( ph  ->  ( vol * `  ( E  \  B ) )  e.  RR )
116, 10readdcld 8862 . 2  |-  ( ph  ->  ( ( vol * `  ( E  i^i  B
) )  +  ( vol * `  ( E  \  B ) ) )  e.  RR )
12 ioombl1.b . . 3  |-  B  =  ( A (,)  +oo )
13 ioombl1.a . . 3  |-  ( ph  ->  A  e.  RR )
14 ioombl1.c . . 3  |-  ( ph  ->  C  e.  RR+ )
15 ioombl1.s . . 3  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
16 ioombl1.t . . 3  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
17 ioombl1.u . . 3  |-  U  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
18 ioombl1.f1 . . 3  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
19 ioombl1.f2 . . 3  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
20 ioombl1.f3 . . 3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
21 ioombl1.p . . 3  |-  P  =  ( 1st `  ( F `  n )
)
22 ioombl1.q . . 3  |-  Q  =  ( 2nd `  ( F `  n )
)
23 ioombl1.g . . 3  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
24 ioombl1.h . . 3  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
2512, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24ioombl1lem2 18916 . 2  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
2614rpred 10390 . . 3  |-  ( ph  ->  C  e.  RR )
274, 26readdcld 8862 . 2  |-  ( ph  ->  ( ( vol * `  E )  +  C
)  e.  RR )
2812, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24ioombl1lem1 18915 . . . . . . . . 9  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
2928simpld 445 . . . . . . . 8  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
30 eqid 2283 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
3130, 16ovolsf 18832 . . . . . . . 8  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  T : NN --> ( 0 [,) 
+oo ) )
3229, 31syl 15 . . . . . . 7  |-  ( ph  ->  T : NN --> ( 0 [,)  +oo ) )
33 frn 5395 . . . . . . 7  |-  ( T : NN --> ( 0 [,)  +oo )  ->  ran  T 
C_  ( 0 [,) 
+oo ) )
3432, 33syl 15 . . . . . 6  |-  ( ph  ->  ran  T  C_  (
0 [,)  +oo ) )
35 0re 8838 . . . . . . 7  |-  0  e.  RR
36 pnfxr 10455 . . . . . . 7  |-  +oo  e.  RR*
37 icossre 10730 . . . . . . 7  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
3835, 36, 37mp2an 653 . . . . . 6  |-  ( 0 [,)  +oo )  C_  RR
3934, 38syl6ss 3191 . . . . 5  |-  ( ph  ->  ran  T  C_  RR )
40 1nn 9757 . . . . . . . 8  |-  1  e.  NN
41 fdm 5393 . . . . . . . . 9  |-  ( T : NN --> ( 0 [,)  +oo )  ->  dom  T  =  NN )
4232, 41syl 15 . . . . . . . 8  |-  ( ph  ->  dom  T  =  NN )
4340, 42syl5eleqr 2370 . . . . . . 7  |-  ( ph  ->  1  e.  dom  T
)
44 ne0i 3461 . . . . . . 7  |-  ( 1  e.  dom  T  ->  dom  T  =/=  (/) )
4543, 44syl 15 . . . . . 6  |-  ( ph  ->  dom  T  =/=  (/) )
46 dm0rn0 4895 . . . . . . 7  |-  ( dom 
T  =  (/)  <->  ran  T  =  (/) )
4746necon3bii 2478 . . . . . 6  |-  ( dom 
T  =/=  (/)  <->  ran  T  =/=  (/) )
4845, 47sylib 188 . . . . 5  |-  ( ph  ->  ran  T  =/=  (/) )
49 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( T : NN --> ( 0 [,)  +oo )  /\  j  e.  NN )  ->  ( T `  j )  e.  ( 0 [,)  +oo ) )
5032, 49sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  e.  ( 0 [,)  +oo ) )
5138, 50sseldi 3178 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  e.  RR )
52 eqid 2283 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
5352, 15ovolsf 18832 . . . . . . . . . . . 12  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) 
+oo ) )
5418, 53syl 15 . . . . . . . . . . 11  |-  ( ph  ->  S : NN --> ( 0 [,)  +oo ) )
55 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( S : NN --> ( 0 [,)  +oo )  /\  j  e.  NN )  ->  ( S `  j )  e.  ( 0 [,)  +oo ) )
5654, 55sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  e.  ( 0 [,)  +oo ) )
5738, 56sseldi 3178 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  e.  RR )
5825adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
59 simpr 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  NN )
60 nnuz 10263 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
6159, 60syl6eleq 2373 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  ( ZZ>= `  1 )
)
62 simpl 443 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  ph )
63 elfznn 10819 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
6430ovolfsf 18831 . . . . . . . . . . . . . . 15  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,)  +oo ) )
6529, 64syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,)  +oo ) )
66 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,)  +oo )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  e.  ( 0 [,)  +oo ) )
6765, 66sylan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  e.  ( 0 [,)  +oo )
)
6838, 67sseldi 3178 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  e.  RR )
6962, 63, 68syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  e.  RR )
7052ovolfsf 18831 . . . . . . . . . . . . . . . 16  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  F ) : NN --> ( 0 [,)  +oo ) )
7118, 70syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
) : NN --> ( 0 [,)  +oo ) )
72 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( ( ( abs  o.  -  )  o.  F
) : NN --> ( 0 [,)  +oo )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  e.  ( 0 [,)  +oo ) )
7371, 72sylan 457 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  e.  ( 0 [,)  +oo )
)
74 elrege0 10746 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs  o.  -  )  o.  F
) `  n )  e.  ( 0 [,)  +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  F ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  F ) `  n
) ) )
7573, 74sylib 188 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  F
) `  n )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  F ) `  n
) ) )
7675simpld 445 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  e.  RR )
7762, 63, 76syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  e.  RR )
7828simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
79 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
8079ovolfsf 18831 . . . . . . . . . . . . . . . . . 18  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  H ) : NN --> ( 0 [,)  +oo ) )
8178, 80syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( abs  o.  -  )  o.  H
) : NN --> ( 0 [,)  +oo ) )
82 ffvelrn 5663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs  o.  -  )  o.  H
) : NN --> ( 0 [,)  +oo )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  e.  ( 0 [,)  +oo ) )
8381, 82sylan 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  e.  ( 0 [,)  +oo )
)
84 elrege0 10746 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( abs  o.  -  )  o.  H
) `  n )  e.  ( 0 [,)  +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  H ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  H ) `  n
) ) )
8583, 84sylib 188 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  H
) `  n )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  H ) `  n
) ) )
8685simprd 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  H ) `  n
) )
8785simpld 445 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  e.  RR )
8868, 87addge01d 9360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <_  ( ( ( abs  o.  -  )  o.  H ) `  n
)  <->  ( ( ( abs  o.  -  )  o.  G ) `  n
)  <_  ( (
( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) ) ) )
8986, 88mpbid 201 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  <_  (
( ( ( abs 
o.  -  )  o.  G ) `  n
)  +  ( ( ( abs  o.  -  )  o.  H ) `  n ) ) )
9012, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24ioombl1lem3 18917 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
9189, 90breqtrd 4047 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  <_  (
( ( abs  o.  -  )  o.  F
) `  n )
)
9262, 63, 91syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  <_  ( ( ( abs 
o.  -  )  o.  F ) `  n
) )
9361, 69, 77, 92serle 11101 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  j
)  <_  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
) )
9416fveq1i 5526 . . . . . . . . . 10  |-  ( T `
 j )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) `  j )
9515fveq1i 5526 . . . . . . . . . 10  |-  ( S `
 j )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  j )
9693, 94, 953brtr4g 4055 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  <_ 
( S `  j
) )
97 1z 10053 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
9897a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
99 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
10075simprd 449 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  F ) `  n
) )
101 frn 5395 . . . . . . . . . . . . . . . . . . . . 21  |-  ( S : NN --> ( 0 [,)  +oo )  ->  ran  S 
C_  ( 0 [,) 
+oo ) )
10254, 101syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ran  S  C_  (
0 [,)  +oo ) )
103 icossxr 10734 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0 [,)  +oo )  C_  RR*
104102, 103syl6ss 3191 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ran  S  C_  RR* )
105104adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ran  S  C_ 
RR* )
106 ffn 5389 . . . . . . . . . . . . . . . . . . . 20  |-  ( S : NN --> ( 0 [,)  +oo )  ->  S  Fn  NN )
10754, 106syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  S  Fn  NN )
108 fnfvelrn 5662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  Fn  NN  /\  k  e.  NN )  ->  ( S `  k
)  e.  ran  S
)
109107, 108sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  e. 
ran  S )
110 supxrub 10643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ran  S  C_  RR*  /\  ( S `  k )  e.  ran  S )  -> 
( S `  k
)  <_  sup ( ran  S ,  RR* ,  <  ) )
111105, 109, 110syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  <_  sup ( ran  S ,  RR* ,  <  ) )
112111ralrimiva 2626 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  NN  ( S `  k )  <_  sup ( ran  S ,  RR* ,  <  )
)
113 breq2 4027 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( S `
 k )  <_  x 
<->  ( S `  k
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
114113ralbidv 2563 . . . . . . . . . . . . . . . . 17  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. k  e.  NN  ( S `  k )  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  sup ( ran  S ,  RR* ,  <  )
) )
115114rspcev 2884 . . . . . . . . . . . . . . . 16  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. k  e.  NN  ( S `  k )  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x )
11625, 112, 115syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x )
11760, 15, 98, 99, 76, 100, 116isumsup2 12305 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  ~~>  sup ( ran  S ,  RR ,  <  )
)
118102, 38syl6ss 3191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  S  C_  RR )
119 fdm 5393 . . . . . . . . . . . . . . . . . . 19  |-  ( S : NN --> ( 0 [,)  +oo )  ->  dom  S  =  NN )
12054, 119syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  S  =  NN )
12140, 120syl5eleqr 2370 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  dom  S
)
122 ne0i 3461 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  dom  S  ->  dom  S  =/=  (/) )
123121, 122syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  S  =/=  (/) )
124 dm0rn0 4895 . . . . . . . . . . . . . . . . 17  |-  ( dom 
S  =  (/)  <->  ran  S  =  (/) )
125124necon3bii 2478 . . . . . . . . . . . . . . . 16  |-  ( dom 
S  =/=  (/)  <->  ran  S  =/=  (/) )
126123, 125sylib 188 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  S  =/=  (/) )
127 breq1 4026 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( S `  k )  ->  (
z  <_  x  <->  ( S `  k )  <_  x
) )
128127ralrn 5668 . . . . . . . . . . . . . . . . . 18  |-  ( S  Fn  NN  ->  ( A. z  e.  ran  S  z  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  x
) )
129107, 128syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. z  e. 
ran  S  z  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  x ) )
130129rexbidv 2564 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  S  z  <_  x  <->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x ) )
131116, 130mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  S  z  <_  x )
132 supxrre 10646 . . . . . . . . . . . . . . 15  |-  ( ( ran  S  C_  RR  /\ 
ran  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  S  z  <_  x )  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  S ,  RR ,  <  ) )
133118, 126, 131, 132syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  S ,  RR ,  <  )
)
134117, 133breqtrrd 4049 . . . . . . . . . . . . 13  |-  ( ph  ->  S  ~~>  sup ( ran  S ,  RR* ,  <  )
)
135134adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  S  ~~>  sup ( ran  S ,  RR* ,  <  ) )
13615, 135syl5eqbrr 4057 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  F )
)  ~~>  sup ( ran  S ,  RR* ,  <  )
)
13776adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  e.  RR )
138100adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  NN )  ->  0  <_  ( ( ( abs 
o.  -  )  o.  F ) `  n
) )
13960, 59, 136, 137, 138climserle 12136 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
)  <_  sup ( ran  S ,  RR* ,  <  ) )
14095, 139syl5eqbr 4056 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  <_  sup ( ran  S ,  RR* ,  <  ) )
14151, 57, 58, 96, 140letrd 8973 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  <_  sup ( ran  S ,  RR* ,  <  ) )
142141ralrimiva 2626 . . . . . . 7  |-  ( ph  ->  A. j  e.  NN  ( T `  j )  <_  sup ( ran  S ,  RR* ,  <  )
)
143 breq2 4027 . . . . . . . . 9  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( T `
 j )  <_  x 
<->  ( T `  j
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
144143ralbidv 2563 . . . . . . . 8  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. j  e.  NN  ( T `  j )  <_  x  <->  A. j  e.  NN  ( T `  j )  <_  sup ( ran  S ,  RR* ,  <  )
) )
145144rspcev 2884 . . . . . . 7  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. j  e.  NN  ( T `  j )  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. j  e.  NN  ( T `  j )  <_  x )
14625, 142, 145syl2anc 642 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. j  e.  NN  ( T `  j )  <_  x )
147 ffn 5389 . . . . . . . . 9  |-  ( T : NN --> ( 0 [,)  +oo )  ->  T  Fn  NN )
14832, 147syl 15 . . . . . . . 8  |-  ( ph  ->  T  Fn  NN )
149 breq1 4026 . . . . . . . . 9  |-  ( z  =  ( T `  j )  ->  (
z  <_  x  <->  ( T `  j )  <_  x
) )
150149ralrn 5668 . . . . . . . 8  |-  ( T  Fn  NN  ->  ( A. z  e.  ran  T  z  <_  x  <->  A. j  e.  NN  ( T `  j )  <_  x
) )
151148, 150syl 15 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  T  z  <_  x  <->  A. j  e.  NN  ( T `  j )  <_  x ) )
152151rexbidv 2564 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  T  z  <_  x  <->  E. x  e.  RR  A. j  e.  NN  ( T `  j )  <_  x ) )
153146, 152mpbird 223 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )
154 suprcl 9714 . . . . 5  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )  ->  sup ( ran  T ,  RR ,  <  )  e.  RR )
15539, 48, 153, 154syl3anc 1182 . . . 4  |-  ( ph  ->  sup ( ran  T ,  RR ,  <  )  e.  RR )
15679, 17ovolsf 18832 . . . . . . . 8  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U : NN --> ( 0 [,) 
+oo ) )
15778, 156syl 15 . . . . . . 7  |-  ( ph  ->  U : NN --> ( 0 [,)  +oo ) )
158 frn 5395 . . . . . . 7  |-  ( U : NN --> ( 0 [,)  +oo )  ->  ran  U 
C_  ( 0 [,) 
+oo ) )
159157, 158syl 15 . . . . . 6  |-  ( ph  ->  ran  U  C_  (
0 [,)  +oo ) )
160159, 38syl6ss 3191 . . . . 5  |-  ( ph  ->  ran  U  C_  RR )
161 fdm 5393 . . . . . . . . 9  |-  ( U : NN --> ( 0 [,)  +oo )  ->  dom  U  =  NN )
162157, 161syl 15 . . . . . . . 8  |-  ( ph  ->  dom  U  =  NN )
16340, 162syl5eleqr 2370 . . . . . . 7  |-  ( ph  ->  1  e.  dom  U
)
164 ne0i 3461 . . . . . . 7  |-  ( 1  e.  dom  U  ->  dom  U  =/=  (/) )
165163, 164syl 15 . . . . . 6  |-  ( ph  ->  dom  U  =/=  (/) )
166 dm0rn0 4895 . . . . . . 7  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
167166necon3bii 2478 . . . . . 6  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
168165, 167sylib 188 . . . . 5  |-  ( ph  ->  ran  U  =/=  (/) )
169 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( U : NN --> ( 0 [,)  +oo )  /\  j  e.  NN )  ->  ( U `  j )  e.  ( 0 [,)  +oo ) )
170157, 169sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  e.  ( 0 [,)  +oo ) )
17138, 170sseldi 3178 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  e.  RR )
17262, 63, 87syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  e.  RR )
173 elrege0 10746 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  e.  ( 0 [,)  +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  G ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  G ) `  n
) ) )
17467, 173sylib 188 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  n
) ) )
175174simprd 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  n
) )
17687, 68addge02d 9361 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <_  ( ( ( abs  o.  -  )  o.  G ) `  n
)  <->  ( ( ( abs  o.  -  )  o.  H ) `  n
)  <_  ( (
( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) ) ) )
177175, 176mpbid 201 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  <_  (
( ( ( abs 
o.  -  )  o.  G ) `  n
)  +  ( ( ( abs  o.  -  )  o.  H ) `  n ) ) )
178177, 90breqtrd 4047 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  <_  (
( ( abs  o.  -  )  o.  F
) `  n )
)
17962, 63, 178syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  <_  ( ( ( abs 
o.  -  )  o.  F ) `  n
) )
18061, 172, 77, 179serle 11101 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  H
) ) `  j
)  <_  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
) )
18117fveq1i 5526 . . . . . . . . . 10  |-  ( U `
 j )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  H ) ) `  j )
182180, 181, 953brtr4g 4055 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  <_ 
( S `  j
) )
183171, 57, 58, 182, 140letrd 8973 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  <_  sup ( ran  S ,  RR* ,  <  ) )
184183ralrimiva 2626 . . . . . . 7  |-  ( ph  ->  A. j  e.  NN  ( U `  j )  <_  sup ( ran  S ,  RR* ,  <  )
)
185 breq2 4027 . . . . . . . . 9  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( U `
 j )  <_  x 
<->  ( U `  j
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
186185ralbidv 2563 . . . . . . . 8  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. j  e.  NN  ( U `  j )  <_  x  <->  A. j  e.  NN  ( U `  j )  <_  sup ( ran  S ,  RR* ,  <  )
) )
187186rspcev 2884 . . . . . . 7  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. j  e.  NN  ( U `  j )  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. j  e.  NN  ( U `  j )  <_  x )
18825, 184, 187syl2anc 642 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. j  e.  NN  ( U `  j )  <_  x )
189 ffn 5389 . . . . . . . . 9  |-  ( U : NN --> ( 0 [,)  +oo )  ->  U  Fn  NN )
190157, 189syl 15 . . . . . . . 8  |-  ( ph  ->  U  Fn  NN )
191 breq1 4026 . . . . . . . . 9  |-  ( z  =  ( U `  j )  ->  (
z  <_  x  <->  ( U `  j )  <_  x
) )
192191ralrn 5668 . . . . . . . 8  |-  ( U  Fn  NN  ->  ( A. z  e.  ran  U  z  <_  x  <->  A. j  e.  NN  ( U `  j )  <_  x
) )
193190, 192syl 15 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  U  z  <_  x  <->  A. j  e.  NN  ( U `  j )  <_  x ) )
194193rexbidv 2564 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  U  z  <_  x  <->  E. x  e.  RR  A. j  e.  NN  ( U `  j )  <_  x ) )
195188, 194mpbird 223 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  U  z  <_  x )
196 suprcl 9714 . . . . 5  |-  ( ( ran  U  C_  RR  /\ 
ran  U  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  U  z  <_  x )  ->  sup ( ran  U ,  RR ,  <  )  e.  RR )
197160, 168, 195, 196syl3anc 1182 . . . 4  |-  ( ph  ->  sup ( ran  U ,  RR ,  <  )  e.  RR )
198 ssralv 3237 . . . . . . . . . 10  |-  ( ( E  i^i  B ) 
C_  E  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) ) )
1991, 198ax-mp 8 . . . . . . . . 9  |-  ( A. x  e.  E  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) )
20021breq1i 4030 . . . . . . . . . . . . 13  |-  ( P  <  x  <->  ( 1st `  ( F `  n
) )  <  x
)
201 ovolfcl 18826 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
20218, 201sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
203202simp1d 967 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
20421, 203syl5eqel 2367 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  P  e.  RR )
205204adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  P  e.  RR )
2061, 3syl5ss 3190 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E  i^i  B
)  C_  RR )
207206sselda 3180 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( E  i^i  B ) )  ->  x  e.  RR )
208207adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  x  e.  RR )
209 ltle 8910 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  RR  /\  x  e.  RR )  ->  ( P  <  x  ->  P  <_  x )
)
210205, 208, 209syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( P  <  x  ->  P  <_  x ) )
211 simpr 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
212 opex 4237 . . . . . . . . . . . . . . . . . . . 20  |-  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
_V
21323fvmpt2 5608 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  NN  /\  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
_V )  ->  ( G `  n )  =  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
214211, 212, 213sylancl 643 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  = 
<. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
215214fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. ) )
21613adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  RR )
217 ifcl 3601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  P  e.  RR )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
218216, 204, 217syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  NN )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
219202simp2d 968 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
22022, 219syl5eqel 2367 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  NN )  ->  Q  e.  RR )
221 ifcl 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( if ( P  <_  A ,  A ,  P )  e.  RR  /\  Q  e.  RR )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR )
222218, 220, 221syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )
223 op1stg 6132 . . . . . . . . . . . . . . . . . . 19  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
224222, 220, 223syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
225215, 224eqtrd 2315 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
226225ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( 1st `  ( G `  n )
)  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
227222ad2ant2r 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR )
228218ad2ant2r 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
229206ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( E  i^i  B )  C_  RR )
230 simplr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  x  e.  ( E  i^i  B ) )
231229, 230sseldd 3181 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  x  e.  RR )
232220ad2ant2r 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  Q  e.  RR )
233 min1 10517 . . . . . . . . . . . . . . . . . 18  |-  ( ( if ( P  <_  A ,  A ,  P )  e.  RR  /\  Q  e.  RR )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  if ( P  <_  A ,  A ,  P )
)
234228, 232, 233syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  if ( P  <_  A ,  A ,  P )
)
23513ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  A  e.  RR )
236 inss2 3390 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E  i^i  B )  C_  B
237236sseli 3176 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( E  i^i  B )  ->  x  e.  B )
238237ad2antlr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  x  e.  B
)
23913rexrd 8881 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  A  e.  RR* )
240 elioo2 10697 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  RR*  /\  +oo  e.  RR* )  ->  (
x  e.  ( A (,)  +oo )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <  +oo ) ) )
241239, 36, 240sylancl 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( x  e.  ( A (,)  +oo )  <->  ( x  e.  RR  /\  A  <  x  /\  x  <  +oo ) ) )
24212eleq2i 2347 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  B  <->  x  e.  ( A (,)  +oo )
)
243 ltpnf 10463 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  RR  ->  x  <  +oo )
244243adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  RR  /\  A  <  x )  ->  x  <  +oo )
245244pm4.71i 613 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  RR  /\  A  <  x )  <->  ( (
x  e.  RR  /\  A  <  x )  /\  x  <  +oo ) )
246 df-3an 936 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  RR  /\  A  <  x  /\  x  <  +oo )  <->  ( (
x  e.  RR  /\  A  <  x )  /\  x  <  +oo ) )
247245, 246bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  RR  /\  A  <  x )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <  +oo ) )
248241, 242, 2473bitr4g 279 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( x  e.  B  <->  ( x  e.  RR  /\  A  <  x ) ) )
249 simpr 447 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  A  <  x )  ->  A  <  x )
250248, 249syl6bi 219 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( x  e.  B  ->  A  <  x ) )
251250ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( x  e.  B  ->  A  <  x ) )
252238, 251mpd 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  A  <  x
)
253235, 231, 252ltled 8967 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  A  <_  x
)
254 simprr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  P  <_  x
)
255 breq1 4026 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  if ( P  <_  A ,  A ,  P )  ->  ( A  <_  x  <->  if ( P  <_  A ,  A ,  P )  <_  x
) )
256 breq1 4026 . . . . . . . . . . . . . . . . . . 19  |-  ( P  =  if ( P  <_  A ,  A ,  P )  ->  ( P  <_  x  <->  if ( P  <_  A ,  A ,  P )  <_  x
) )
257255, 256ifboth 3596 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <_  x  /\  P  <_  x )  ->  if ( P  <_  A ,  A ,  P )  <_  x )
258253, 254, 257syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( P  <_  A ,  A ,  P )  <_  x
)
259227, 228, 231, 234, 258letrd 8973 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  x
)
260226, 259eqbrtrd 4043 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( 1st `  ( G `  n )
)  <_  x )
261260expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( P  <_  x  ->  ( 1st `  ( G `  n ) )  <_  x ) )
262210, 261syld 40 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( P  <  x  ->  ( 1st `  ( G `  n ) )  <_  x ) )
263200, 262syl5bir 209 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  x  ->  ( 1st `  ( G `
 n ) )  <_  x ) )
26422breq2i 4031 . . . . . . . . . . . . . 14  |-  ( x  <  Q  <->  x  <  ( 2nd `  ( F `
 n ) ) )
265220adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  Q  e.  RR )
266 ltle 8910 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  Q  e.  RR )  ->  ( x  <  Q  ->  x  <_  Q )
)
267208, 265, 266syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <  Q  ->  x  <_  Q ) )
268264, 267syl5bir 209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <  ( 2nd `  ( F `  n
) )  ->  x  <_  Q ) )
269214fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. ) )
270 op2ndg 6133 . . . . . . . . . . . . . . . . 17  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. )  =  Q )
271222, 220, 270syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )  =  Q )
272269, 271eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  Q )
273272adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n ) )  =  Q )
274273breq2d 4035 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <_  ( 2nd `  ( G `  n
) )  <->  x  <_  Q ) )
275268, 274sylibrd 225 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <  ( 2nd `  ( F `  n
) )  ->  x  <_  ( 2nd `  ( G `  n )
) ) )
276263, 275anim12d 546 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  (
( 1st `  ( G `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( G `  n )
) ) ) )
277276reximdva 2655 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( E  i^i  B ) )  ->  ( E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( G `  n
) ) ) ) )
278277ralimdva 2621 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  i^i  B ) E. n  e.  NN  (
( 1st `  ( G `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( G `  n )
) ) ) )
279199, 278syl5 28 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  i^i  B ) E. n  e.  NN  (
( 1st `  ( G `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( G `  n )
) ) ) )
280 ovolfioo 18827 . . . . . . . . 9  |-  ( ( E  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( E  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
2813, 18, 280syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( E  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
282 ovolficc 18828 . . . . . . . . 9  |-  ( ( ( E  i^i  B
)  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( ( E  i^i  B )  C_  U. ran  ( [,]  o.  G )  <->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( G `  n
) ) ) ) )
283206, 29, 282syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( ( E  i^i  B )  C_  U. ran  ( [,]  o.  G )  <->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( G `  n
) ) ) ) )
284279, 281, 2833imtr4d 259 . . . . . . 7  |-  ( ph  ->  ( E  C_  U. ran  ( (,)  o.  F )  ->  ( E  i^i  B )  C_  U. ran  ( [,]  o.  G ) ) )
28519, 284mpd 14 . . . . . 6  |-  ( ph  ->  ( E  i^i  B
)  C_  U. ran  ( [,]  o.  G ) )
28616ovollb2 18848 . . . . . 6  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  ( E  i^i  B )  C_  U.
ran  ( [,]  o.  G ) )  -> 
( vol * `  ( E  i^i  B ) )  <_  sup ( ran  T ,  RR* ,  <  ) )
28729, 285, 286syl2anc 642 . . . . 5  |-  ( ph  ->  ( vol * `  ( E  i^i  B ) )  <_  sup ( ran  T ,  RR* ,  <  ) )
288 supxrre 10646 . . . . . 6  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  ) )
28939, 48, 153, 288syl3anc 1182 . . . . 5  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  )
)
290287, 289breqtrd 4047 . . . 4  |-  ( ph  ->  ( vol * `  ( E  i^i  B ) )  <_  sup ( ran  T ,  RR ,  <  ) )
291 ssralv 3237 . . . . . . . . . 10  |-  ( ( E  \  B ) 
C_  E  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  \  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) ) )
2927, 291ax-mp 8 . . . . . . . . 9  |-  ( A. x  e.  E  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  \  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) )
293204adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  P  e.  RR )
2947, 3syl5ss 3190 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E  \  B
)  C_  RR )
295294sselda 3180 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( E  \  B ) )  ->  x  e.  RR )
296295adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  x  e.  RR )
297293, 296, 209syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  ( P  <  x  ->  P  <_  x ) )
298200, 297syl5bir 209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  x  ->  P  <_  x ) )
299 opex 4237 . . . . . . . . . . . . . . . . . 18  |-  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  _V
30024fvmpt2 5608 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >.  e.  _V )  ->  ( H `  n )  =  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )
301211, 299, 300sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  = 
<. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
302301fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( H `  n
) )  =  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. ) )
303 op1stg 6132 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )  =  P )
304204, 222, 303syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )  =  P )
305302, 304eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( H `  n
) )  =  P )
306305adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  ( 1st `  ( H `  n ) )  =  P )
307306breq1d 4033 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( H `  n )
)  <_  x  <->  P  <_  x ) )
308298, 307sylibrd 225 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  x  ->  ( 1st `  ( H `
 n ) )  <_  x ) )
309220adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  Q  e.  RR )
310296, 309, 266syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <  Q  ->  x  <_  Q ) )
311294ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( E  \  B )  C_  RR )
312 simplr 731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  e.  ( E  \  B ) )
313311, 312sseldd 3181 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  e.  RR )
31413ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  A  e.  RR )
315204ad2ant2r 727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  P  e.  RR )
316314, 315, 217syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
317 eldifn 3299 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( E  \  B )  ->  -.  x  e.  B )
318317ad2antlr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  -.  x  e.  B )
319313biantrurd 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( A  < 
x  <->  ( x  e.  RR  /\  A  < 
x ) ) )
320248ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( x  e.  B  <->  ( x  e.  RR  /\  A  < 
x ) ) )
321319, 320bitr4d 247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( A  < 
x  <->  x  e.  B
) )
322318, 321mtbird 292 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  -.  A  <  x )
323313, 314lenltd 8965 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( x  <_  A 
<->  -.  A  <  x
) )
324322, 323mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  A
)
325 max2 10516 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  RR  /\  A  e.  RR )  ->  A  <_  if ( P  <_  A ,  A ,  P ) )
326315, 314, 325syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  A  <_  if ( P  <_  A ,  A ,  P )
)
327313, 314, 316, 324, 326letrd 8973 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  if ( P  <_  A ,  A ,  P )
)
328 simprr 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  Q
)
329 breq2 4027 . . . . . . . . . . . . . . . . . 18  |-  ( if ( P  <_  A ,  A ,  P )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  (
x  <_  if ( P  <_  A ,  A ,  P )  <->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
330 breq2 4027 . . . . . . . . . . . . . . . . . 18  |-  ( Q  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  (
x  <_  Q  <->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
331329, 330ifboth 3596 . . . . . . . . . . . . . . . . 17  |-  ( ( x  <_  if ( P  <_  A ,  A ,  P )  /\  x  <_  Q )  ->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
332327, 328, 331syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
333301fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( H `  n
) )  =  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. ) )
334 op2ndg 6133 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
335204, 222, 334syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
336333, 335eqtrd 2315 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( H `  n
) )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
337336ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( 2nd `  ( H `  n )
)  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
338332, 337breqtrrd 4049 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  ( 2nd `  ( H `  n ) ) )
339338expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <_  Q  ->  x  <_  ( 2nd `  ( H `  n )
) ) )
340310, 339syld 40 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <  Q  ->  x  <_  ( 2nd `  ( H `  n )
) ) )
341264, 340syl5bir 209 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <  ( 2nd `  ( F `  n
) )  ->  x  <_  ( 2nd `  ( H `  n )
) ) )
342308, 341anim12d 546 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
343342reximdva 2655 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( E  \  B ) )  ->  ( E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( H `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( H `  n
) ) ) ) )
344343ralimdva 2621 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  ( E  \  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
345292, 344syl5 28 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
346 ovolficc 18828 . . . . . . . . 9  |-  ( ( ( E  \  B
)  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( ( E  \  B )  C_  U. ran  ( [,]  o.  H )  <->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
347294, 78, 346syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( ( E  \  B )  C_  U. ran  ( [,]  o.  H )  <->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
348345, 281, 3473imtr4d 259 . . . . . . 7  |-  ( ph  ->  ( E  C_  U. ran  ( (,)  o.  F )  ->  ( E  \  B )  C_  U. ran  ( [,]  o.  H ) ) )
34919, 348mpd 14 . . . . . 6  |-  ( ph  ->  ( E  \  B
)  C_  U. ran  ( [,]  o.  H ) )
35017ovollb2 18848 . . . . . 6  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  ( E  \  B )  C_  U.
ran  ( [,]  o.  H ) )  -> 
( vol * `  ( E  \  B ) )  <_  sup ( ran  U ,  RR* ,  <  ) )
35178, 349, 350syl2anc 642 . . . . 5  |-  ( ph  ->  ( vol * `  ( E  \  B ) )  <_  sup ( ran  U ,  RR* ,  <  ) )
352 supxrre 10646 . . . . . 6  |-  ( ( ran  U  C_  RR  /\ 
ran  U  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  U  z  <_  x )  ->  sup ( ran  U ,  RR* ,  <  )  =  sup ( ran  U ,  RR ,  <  ) )
353160, 168, 195, 352syl3anc 1182 . . . . 5  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  =  sup ( ran  U ,  RR ,  <  )
)
354351, 353breqtrd 4047 . . . 4  |-  ( ph  ->  ( vol * `  ( E  \  B ) )  <_  sup ( ran  U ,  RR ,  <  ) )
3556, 10, 155, 197, 290, 354le2addd 9390 . . 3  |-  ( ph  ->  ( ( vol * `  ( E  i^i  B
) )  +  ( vol * `  ( E  \  B ) ) )  <_  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) ) )
356 eqidd 2284 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( ( abs  o.  -  )  o.  G
) `  n )
)
35760, 16, 98, 356, 68, 175, 146isumsup2 12305 . . . . 5  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR ,  <  )
)
358 seqex 11048 . . . . . . 7  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  F )
)  e.  _V
35915, 358eqeltri 2353 . . . . . 6  |-  S  e. 
_V
360359a1i 10 . . . . 5  |-  ( ph  ->  S  e.  _V )
361 eqidd 2284 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  =  ( ( ( abs  o.  -  )  o.  H
) `  n )
)
36260, 17, 98, 361, 87, 86, 188isumsup2 12305 . . . . 5  |-  ( ph  ->  U  ~~>  sup ( ran  U ,  RR ,  <  )
)
36351recnd 8861 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  e.  CC )
364171recnd 8861 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  e.  CC )
36568recnd 8861 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  e.  CC )
36662, 63, 365syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  e.  CC )
36787recnd 8861 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  e.  CC )
36862, 63, 367syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  e.  CC )
36990eqcomd 2288 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( ( ( abs 
o.  -  )  o.  G ) `  n
)  +  ( ( ( abs  o.  -  )  o.  H ) `  n ) ) )
37062, 63, 369syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( ( ( abs  o.  -  )  o.  G ) `  n )  +  ( ( ( abs  o.  -  )  o.  H
) `  n )
) )
37161, 366, 368, 370seradd 11088 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
)  =  ( (  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) `  j )  +  (  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) ) `  j ) ) )
37294, 181oveq12i 5870 . . . . . 6  |-  ( ( T `  j )  +  ( U `  j ) )  =  ( (  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) `  j )  +  (  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  H )
) `  j )
)
373371, 95, 3723eqtr4g 2340 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  =  ( ( T `  j )  +  ( U `  j ) ) )
37460, 98, 357, 360, 362, 363, 364, 373climadd 12105 . . . 4  |-  ( ph  ->  S  ~~>  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) ) )
375 climuni 12026 . . . 4  |-  ( ( S  ~~>  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) )  /\  S  ~~>  sup ( ran  S ,  RR* ,  <  ) )  ->  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) )  =  sup ( ran  S ,  RR* ,  <  ) )
376374, 134, 375syl2anc 642 . . 3  |-  ( ph  ->  ( sup ( ran 
T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) )  =  sup ( ran  S ,  RR* ,  <  ) )
377355, 376breqtrd 4047 . 2  |-  ( ph  ->  ( ( vol * `  ( E  i^i  B
) )  +  ( vol * `  ( E  \  B ) ) )  <_  sup ( ran  S ,  RR* ,  <  ) )
37811, 25, 27, 377, 20letrd 8973 1  |-  ( ph  ->  ( ( vol * `  ( E  i^i  B
) )  +  ( vol * `  ( E  \  B ) ) )  <_  ( ( vol * `  E )  +  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ifcif 3565   <.cop 3643   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   dom cdm 4689   ran crn 4690    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   (,)cioo 10656   [,)cico 10658   [,]cicc 10659   ...cfz 10782    seq cseq 11046   abscabs 11719    ~~> cli 11958   vol *covol 18822
This theorem is referenced by:  ioombl1  18919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-ovol 18824
  Copyright terms: Public domain W3C validator