Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota2d Structured version   Unicode version

Theorem iota2d 5445
 Description: A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1
iota2df.2
iota2df.3
Assertion
Ref Expression
iota2d
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iota2d
StepHypRef Expression
1 iota2df.1 . 2
2 iota2df.2 . 2
3 iota2df.3 . 2
4 nfv 1630 . 2
5 nfvd 1631 . 2
6 nfcvd 2575 . 2
71, 2, 3, 4, 5, 6iota2df 5444 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wcel 1726  weu 2283  cio 5418 This theorem is referenced by:  erov  7003  q1peqb  20079  psgnvalii  27411 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-v 2960  df-sbc 3164  df-un 3327  df-sn 3822  df-pr 3823  df-uni 4018  df-iota 5420
 Copyright terms: Public domain W3C validator