MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota5 Unicode version

Theorem iota5 5239
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.)
Hypothesis
Ref Expression
iota5.1  |-  ( (
ph  /\  A  e.  V )  ->  ( ps 
<->  x  =  A ) )
Assertion
Ref Expression
iota5  |-  ( (
ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem iota5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iota5.1 . . 3  |-  ( (
ph  /\  A  e.  V )  ->  ( ps 
<->  x  =  A ) )
21alrimiv 1617 . 2  |-  ( (
ph  /\  A  e.  V )  ->  A. x
( ps  <->  x  =  A ) )
3 eqeq2 2292 . . . . . . 7  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
43bibi2d 309 . . . . . 6  |-  ( y  =  A  ->  (
( ps  <->  x  =  y )  <->  ( ps  <->  x  =  A ) ) )
54albidv 1611 . . . . 5  |-  ( y  =  A  ->  ( A. x ( ps  <->  x  =  y )  <->  A. x
( ps  <->  x  =  A ) ) )
6 eqeq2 2292 . . . . 5  |-  ( y  =  A  ->  (
( iota x ps )  =  y  <->  ( iota x ps )  =  A
) )
75, 6imbi12d 311 . . . 4  |-  ( y  =  A  ->  (
( A. x ( ps  <->  x  =  y
)  ->  ( iota x ps )  =  y )  <->  ( A. x
( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) ) )
8 iotaval 5230 . . . 4  |-  ( A. x ( ps  <->  x  =  y )  ->  ( iota x ps )  =  y )
97, 8vtoclg 2843 . . 3  |-  ( A  e.  V  ->  ( A. x ( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) )
109adantl 452 . 2  |-  ( (
ph  /\  A  e.  V )  ->  ( A. x ( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) )
112, 10mpd 14 1  |-  ( (
ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   iotacio 5217
This theorem is referenced by:  isf32lem9  7987  rlimdm  12025  fsum  12193  gsumval2a  14459  dchrptlem1  20503  lgsdchrval  20586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790  df-sbc 2992  df-un 3157  df-sn 3646  df-pr 3647  df-uni 3828  df-iota 5219
  Copyright terms: Public domain W3C validator