MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabi Unicode version

Theorem iotabi 5228
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )

Proof of Theorem iotabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 abbi 2393 . . . . . 6  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
21biimpi 186 . . . . 5  |-  ( A. x ( ph  <->  ps )  ->  { x  |  ph }  =  { x  |  ps } )
32eqeq1d 2291 . . . 4  |-  ( A. x ( ph  <->  ps )  ->  ( { x  | 
ph }  =  {
z }  <->  { x  |  ps }  =  {
z } ) )
43abbidv 2397 . . 3  |-  ( A. x ( ph  <->  ps )  ->  { z  |  {
x  |  ph }  =  { z } }  =  { z  |  {
x  |  ps }  =  { z } }
)
54unieqd 3838 . 2  |-  ( A. x ( ph  <->  ps )  ->  U. { z  |  { x  |  ph }  =  { z } }  =  U. { z  |  {
x  |  ps }  =  { z } }
)
6 df-iota 5219 . 2  |-  ( iota
x ph )  =  U. { z  |  {
x  |  ph }  =  { z } }
7 df-iota 5219 . 2  |-  ( iota
x ps )  = 
U. { z  |  { x  |  ps }  =  { z } }
85, 6, 73eqtr4g 2340 1  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623   {cab 2269   {csn 3640   U.cuni 3827   iotacio 5217
This theorem is referenced by:  iotabidv  5240  iotabii  5241  eusvobj1  6338  iotasbcq  27637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-uni 3828  df-iota 5219
  Copyright terms: Public domain W3C validator