Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotacl Structured version   Unicode version

Theorem iotacl 5444
 Description: Membership law for descriptions. This can useful for expanding an unbounded iota-based definition (see df-iota 5421). If you have a bounded iota-based definition, riotacl2 6566 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.)
Assertion
Ref Expression
iotacl

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 5439 . 2
2 df-sbc 3164 . 2
31, 2sylib 190 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1726  weu 2283  cab 2424  wsbc 3163  cio 5419 This theorem is referenced by:  opiota  6538  riotacl2  6566  eroprf  7005  iunfictbso  8000  isf32lem9  8246  psgnvali  27422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-v 2960  df-sbc 3164  df-un 3327  df-sn 3822  df-pr 3823  df-uni 4018  df-iota 5421
 Copyright terms: Public domain W3C validator