MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaeq Unicode version

Theorem iotaeq 5243
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotaeq  |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )

Proof of Theorem iotaeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 drsb1 1975 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )
2 df-clab 2283 . . . . . . 7  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
3 df-clab 2283 . . . . . . 7  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
41, 2, 33bitr4g 279 . . . . . 6  |-  ( A. x  x  =  y  ->  ( z  e.  {
x  |  ph }  <->  z  e.  { y  | 
ph } ) )
54eqrdv 2294 . . . . 5  |-  ( A. x  x  =  y  ->  { x  |  ph }  =  { y  |  ph } )
65eqeq1d 2304 . . . 4  |-  ( A. x  x  =  y  ->  ( { x  | 
ph }  =  {
z }  <->  { y  |  ph }  =  {
z } ) )
76abbidv 2410 . . 3  |-  ( A. x  x  =  y  ->  { z  |  {
x  |  ph }  =  { z } }  =  { z  |  {
y  |  ph }  =  { z } }
)
87unieqd 3854 . 2  |-  ( A. x  x  =  y  ->  U. { z  |  { x  |  ph }  =  { z } }  =  U. { z  |  {
y  |  ph }  =  { z } }
)
9 df-iota 5235 . 2  |-  ( iota
x ph )  =  U. { z  |  {
x  |  ph }  =  { z } }
10 df-iota 5235 . 2  |-  ( iota y ph )  = 
U. { z  |  { y  |  ph }  =  { z } }
118, 9, 103eqtr4g 2353 1  |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530    = wceq 1632   [wsb 1638    e. wcel 1696   {cab 2282   {csn 3653   U.cuni 3843   iotacio 5233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-uni 3844  df-iota 5235
  Copyright terms: Public domain W3C validator