MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotajust Unicode version

Theorem iotajust 5297
Description: Soundness justification theorem for df-iota 5298. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
iotajust  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  {
x  |  ph }  =  { z } }
Distinct variable groups:    x, z    ph, z    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem iotajust
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sneq 3727 . . . . 5  |-  ( y  =  w  ->  { y }  =  { w } )
21eqeq2d 2369 . . . 4  |-  ( y  =  w  ->  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  {
w } ) )
32cbvabv 2477 . . 3  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { w  |  {
x  |  ph }  =  { w } }
4 sneq 3727 . . . . 5  |-  ( w  =  z  ->  { w }  =  { z } )
54eqeq2d 2369 . . . 4  |-  ( w  =  z  ->  ( { x  |  ph }  =  { w }  <->  { x  |  ph }  =  {
z } ) )
65cbvabv 2477 . . 3  |-  { w  |  { x  |  ph }  =  { w } }  =  {
z  |  { x  |  ph }  =  {
z } }
73, 6eqtri 2378 . 2  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { z  |  {
x  |  ph }  =  { z } }
87unieqi 3916 1  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  {
x  |  ph }  =  { z } }
Colors of variables: wff set class
Syntax hints:    = wceq 1642   {cab 2344   {csn 3716   U.cuni 3906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-rex 2625  df-sn 3722  df-uni 3907
  Copyright terms: Public domain W3C validator