Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotauni Structured version   Unicode version

Theorem iotauni 5433
 Description: Equivalence between two different forms of . (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni

Proof of Theorem iotauni
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2287 . 2
2 iotaval 5432 . . . 4
3 uniabio 5431 . . . 4
42, 3eqtr4d 2473 . . 3
54exlimiv 1645 . 2
61, 5sylbi 189 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wex 1551   wceq 1653  weu 2283  cab 2424  cuni 4017  cio 5419 This theorem is referenced by:  iotaint  5434  iotassuni  5437  dfiota4  5449  fveu  5723  riotauni  6559 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-v 2960  df-sbc 3164  df-un 3327  df-sn 3822  df-pr 3823  df-uni 4018  df-iota 5421
 Copyright terms: Public domain W3C validator