MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip1ilem Structured version   Unicode version

Theorem ip1ilem 22328
Description: Lemma for ip1i 22329. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
ip1i.a  |-  A  e.  X
ip1i.b  |-  B  e.  X
ip1i.c  |-  C  e.  X
ip1i.6  |-  N  =  ( normCV `  U )
ip0i.j  |-  J  e.  CC
Assertion
Ref Expression
ip1ilem  |-  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) )  =  ( 2  x.  ( A P C ) )

Proof of Theorem ip1ilem
StepHypRef Expression
1 ip1i.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
21phnvi 22318 . . . . . 6  |-  U  e.  NrmCVec
3 ip1i.a . . . . . 6  |-  A  e.  X
4 ip1i.c . . . . . 6  |-  C  e.  X
5 ip1i.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
6 ip1i.2 . . . . . . 7  |-  G  =  ( +v `  U
)
7 ip1i.4 . . . . . . 7  |-  S  =  ( .s OLD `  U
)
8 ip1i.6 . . . . . . 7  |-  N  =  ( normCV `  U )
9 ip1i.7 . . . . . . 7  |-  P  =  ( .i OLD `  U
)
105, 6, 7, 8, 94ipval2 22205 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  C  e.  X )  ->  (
4  x.  ( A P C ) )  =  ( ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )
112, 3, 4, 10mp3an 1280 . . . . 5  |-  ( 4  x.  ( A P C ) )  =  ( ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) )
1211oveq2i 6093 . . . 4  |-  ( 2  x.  ( 4  x.  ( A P C ) ) )  =  ( 2  x.  (
( ( ( N `
 ( A G C ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S C ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )
13 2cn 10071 . . . . 5  |-  2  e.  CC
14 4cn 10075 . . . . 5  |-  4  e.  CC
155, 9dipcl 22212 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  C  e.  X )  ->  ( A P C )  e.  CC )
162, 3, 4, 15mp3an 1280 . . . . 5  |-  ( A P C )  e.  CC
1713, 14, 16mul12i 9262 . . . 4  |-  ( 2  x.  ( 4  x.  ( A P C ) ) )  =  ( 4  x.  (
2  x.  ( A P C ) ) )
185, 6nvgcl 22100 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  C  e.  X )  ->  ( A G C )  e.  X )
192, 3, 4, 18mp3an 1280 . . . . . . . . . . 11  |-  ( A G C )  e.  X
205, 8, 2, 19nvcli 22150 . . . . . . . . . 10  |-  ( N `
 ( A G C ) )  e.  RR
2120resqcli 11468 . . . . . . . . 9  |-  ( ( N `  ( A G C ) ) ^ 2 )  e.  RR
2221recni 9103 . . . . . . . 8  |-  ( ( N `  ( A G C ) ) ^ 2 )  e.  CC
23 ax-1cn 9049 . . . . . . . . . . . . . 14  |-  1  e.  CC
2423negcli 9369 . . . . . . . . . . . . 13  |-  -u 1  e.  CC
255, 7nvscl 22108 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  C  e.  X )  ->  ( -u 1 S C )  e.  X )
262, 24, 4, 25mp3an 1280 . . . . . . . . . . . 12  |-  ( -u
1 S C )  e.  X
275, 6nvgcl 22100 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S C )  e.  X )  -> 
( A G (
-u 1 S C ) )  e.  X
)
282, 3, 26, 27mp3an 1280 . . . . . . . . . . 11  |-  ( A G ( -u 1 S C ) )  e.  X
295, 8, 2, 28nvcli 22150 . . . . . . . . . 10  |-  ( N `
 ( A G ( -u 1 S C ) ) )  e.  RR
3029resqcli 11468 . . . . . . . . 9  |-  ( ( N `  ( A G ( -u 1 S C ) ) ) ^ 2 )  e.  RR
3130recni 9103 . . . . . . . 8  |-  ( ( N `  ( A G ( -u 1 S C ) ) ) ^ 2 )  e.  CC
3222, 31subcli 9377 . . . . . . 7  |-  ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  e.  CC
33 ax-icn 9050 . . . . . . . 8  |-  _i  e.  CC
345, 7nvscl 22108 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  C  e.  X )  ->  (
_i S C )  e.  X )
352, 33, 4, 34mp3an 1280 . . . . . . . . . . . . 13  |-  ( _i S C )  e.  X
365, 6nvgcl 22100 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
_i S C )  e.  X )  -> 
( A G ( _i S C ) )  e.  X )
372, 3, 35, 36mp3an 1280 . . . . . . . . . . . 12  |-  ( A G ( _i S C ) )  e.  X
385, 8, 2, 37nvcli 22150 . . . . . . . . . . 11  |-  ( N `
 ( A G ( _i S C ) ) )  e.  RR
3938resqcli 11468 . . . . . . . . . 10  |-  ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  e.  RR
4039recni 9103 . . . . . . . . 9  |-  ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  e.  CC
4133negcli 9369 . . . . . . . . . . . . . 14  |-  -u _i  e.  CC
425, 7nvscl 22108 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  C  e.  X )  ->  ( -u _i S C )  e.  X )
432, 41, 4, 42mp3an 1280 . . . . . . . . . . . . 13  |-  ( -u _i S C )  e.  X
445, 6nvgcl 22100 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u _i S C )  e.  X )  -> 
( A G (
-u _i S C ) )  e.  X
)
452, 3, 43, 44mp3an 1280 . . . . . . . . . . . 12  |-  ( A G ( -u _i S C ) )  e.  X
465, 8, 2, 45nvcli 22150 . . . . . . . . . . 11  |-  ( N `
 ( A G ( -u _i S C ) ) )  e.  RR
4746resqcli 11468 . . . . . . . . . 10  |-  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 )  e.  RR
4847recni 9103 . . . . . . . . 9  |-  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 )  e.  CC
4940, 48subcli 9377 . . . . . . . 8  |-  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) )  e.  CC
5033, 49mulcli 9096 . . . . . . 7  |-  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) )  e.  CC
5113, 32, 50adddii 9101 . . . . . 6  |-  ( 2  x.  ( ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )  =  ( ( 2  x.  ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) ) )  +  ( 2  x.  (
_i  x.  ( (
( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )
52 ip1i.b . . . . . . . . 9  |-  B  e.  X
535, 6, 7, 9, 1, 3, 52, 4, 8, 23ip0i 22327 . . . . . . . 8  |-  ( ( ( ( N `  ( ( A G B ) G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) ) )
545, 7nvsid 22109 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  C  e.  X )  ->  (
1 S C )  =  C )
552, 4, 54mp2an 655 . . . . . . . . . . . . 13  |-  ( 1 S C )  =  C
5655oveq2i 6093 . . . . . . . . . . . 12  |-  ( ( A G B ) G ( 1 S C ) )  =  ( ( A G B ) G C )
5756fveq2i 5732 . . . . . . . . . . 11  |-  ( N `
 ( ( A G B ) G ( 1 S C ) ) )  =  ( N `  (
( A G B ) G C ) )
5857oveq1i 6092 . . . . . . . . . 10  |-  ( ( N `  ( ( A G B ) G ( 1 S C ) ) ) ^ 2 )  =  ( ( N `  ( ( A G B ) G C ) ) ^ 2 )
5958oveq1i 6092 . . . . . . . . 9  |-  ( ( ( N `  (
( A G B ) G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  =  ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G (
-u 1 S C ) ) ) ^
2 ) )
6055oveq2i 6093 . . . . . . . . . . . 12  |-  ( ( A G ( -u
1 S B ) ) G ( 1 S C ) )  =  ( ( A G ( -u 1 S B ) ) G C )
6160fveq2i 5732 . . . . . . . . . . 11  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( 1 S C ) ) )  =  ( N `  (
( A G (
-u 1 S B ) ) G C ) )
6261oveq1i 6092 . . . . . . . . . 10  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( 1 S C ) ) ) ^ 2 )  =  ( ( N `
 ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )
6362oveq1i 6092 . . . . . . . . 9  |-  ( ( ( N `  (
( A G (
-u 1 S B ) ) G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u
1 S C ) ) ) ^ 2 ) )  =  ( ( ( N `  ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u 1 S C ) ) ) ^
2 ) )
6459, 63oveq12i 6094 . . . . . . . 8  |-  ( ( ( ( N `  ( ( A G B ) G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) )  =  ( ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) )
6555oveq2i 6093 . . . . . . . . . . . 12  |-  ( A G ( 1 S C ) )  =  ( A G C )
6665fveq2i 5732 . . . . . . . . . . 11  |-  ( N `
 ( A G ( 1 S C ) ) )  =  ( N `  ( A G C ) )
6766oveq1i 6092 . . . . . . . . . 10  |-  ( ( N `  ( A G ( 1 S C ) ) ) ^ 2 )  =  ( ( N `  ( A G C ) ) ^ 2 )
6867oveq1i 6092 . . . . . . . . 9  |-  ( ( ( N `  ( A G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  =  ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u 1 S C ) ) ) ^ 2 ) )
6968oveq2i 6093 . . . . . . . 8  |-  ( 2  x.  ( ( ( N `  ( A G ( 1 S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  (
( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u 1 S C ) ) ) ^ 2 ) ) )
7053, 64, 693eqtr3i 2465 . . . . . . 7  |-  ( ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) ) )
715, 6, 7, 9, 1, 3, 52, 4, 8, 33ip0i 22327 . . . . . . . . 9  |-  ( ( ( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) )
7271oveq2i 6093 . . . . . . . 8  |-  ( _i  x.  ( ( ( ( N `  (
( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )  =  ( _i  x.  ( 2  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) )
735, 6nvgcl 22100 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
742, 3, 52, 73mp3an 1280 . . . . . . . . . . . . . 14  |-  ( A G B )  e.  X
755, 6nvgcl 22100 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( _i S C )  e.  X )  ->  (
( A G B ) G ( _i S C ) )  e.  X )
762, 74, 35, 75mp3an 1280 . . . . . . . . . . . . 13  |-  ( ( A G B ) G ( _i S C ) )  e.  X
775, 8, 2, 76nvcli 22150 . . . . . . . . . . . 12  |-  ( N `
 ( ( A G B ) G ( _i S C ) ) )  e.  RR
7877resqcli 11468 . . . . . . . . . . 11  |-  ( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  e.  RR
7978recni 9103 . . . . . . . . . 10  |-  ( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  e.  CC
805, 6nvgcl 22100 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( -u _i S C )  e.  X )  ->  (
( A G B ) G ( -u _i S C ) )  e.  X )
812, 74, 43, 80mp3an 1280 . . . . . . . . . . . . 13  |-  ( ( A G B ) G ( -u _i S C ) )  e.  X
825, 8, 2, 81nvcli 22150 . . . . . . . . . . . 12  |-  ( N `
 ( ( A G B ) G ( -u _i S C ) ) )  e.  RR
8382resqcli 11468 . . . . . . . . . . 11  |-  ( ( N `  ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 )  e.  RR
8483recni 9103 . . . . . . . . . 10  |-  ( ( N `  ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 )  e.  CC
8579, 84subcli 9377 . . . . . . . . 9  |-  ( ( ( N `  (
( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) )  e.  CC
865, 7nvscl 22108 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
872, 24, 52, 86mp3an 1280 . . . . . . . . . . . . . . 15  |-  ( -u
1 S B )  e.  X
885, 6nvgcl 22100 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
892, 3, 87, 88mp3an 1280 . . . . . . . . . . . . . 14  |-  ( A G ( -u 1 S B ) )  e.  X
905, 6nvgcl 22100 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( _i S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G ( _i S C ) )  e.  X )
912, 89, 35, 90mp3an 1280 . . . . . . . . . . . . 13  |-  ( ( A G ( -u
1 S B ) ) G ( _i S C ) )  e.  X
925, 8, 2, 91nvcli 22150 . . . . . . . . . . . 12  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) )  e.  RR
9392resqcli 11468 . . . . . . . . . . 11  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  e.  RR
9493recni 9103 . . . . . . . . . 10  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  e.  CC
955, 6nvgcl 22100 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( -u _i S C )  e.  X )  ->  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) )  e.  X
)
962, 89, 43, 95mp3an 1280 . . . . . . . . . . . . 13  |-  ( ( A G ( -u
1 S B ) ) G ( -u _i S C ) )  e.  X
975, 8, 2, 96nvcli 22150 . . . . . . . . . . . 12  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) )  e.  RR
9897resqcli 11468 . . . . . . . . . . 11  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u _i S C ) ) ) ^ 2 )  e.  RR
9998recni 9103 . . . . . . . . . 10  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u _i S C ) ) ) ^ 2 )  e.  CC
10094, 99subcli 9377 . . . . . . . . 9  |-  ( ( ( N `  (
( A G (
-u 1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) )  e.  CC
10133, 85, 100adddii 9101 . . . . . . . 8  |-  ( _i  x.  ( ( ( ( N `  (
( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )  =  ( ( _i  x.  (
( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) )  +  ( _i  x.  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )
10233, 13, 49mul12i 9262 . . . . . . . 8  |-  ( _i  x.  ( 2  x.  ( ( ( N `
 ( A G ( _i S C ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) )  =  ( 2  x.  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) )
10372, 101, 1023eqtr3i 2465 . . . . . . 7  |-  ( ( _i  x.  ( ( ( N `  (
( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) )  +  ( _i  x.  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )  =  ( 2  x.  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) )
10470, 103oveq12i 6094 . . . . . 6  |-  ( ( ( ( ( N `
 ( ( A G B ) G C ) ) ^
2 )  -  (
( N `  (
( A G B ) G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u 1 S C ) ) ) ^
2 ) ) )  +  ( ( _i  x.  ( ( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G (
-u _i S C ) ) ) ^
2 ) ) )  +  ( _i  x.  ( ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) ) )  =  ( ( 2  x.  (
( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u 1 S C ) ) ) ^ 2 ) ) )  +  ( 2  x.  ( _i  x.  ( ( ( N `
 ( A G ( _i S C ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )
10551, 104eqtr4i 2460 . . . . 5  |-  ( 2  x.  ( ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) ) )  +  ( ( _i  x.  ( ( ( N `  (
( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) )  +  ( _i  x.  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )
1065, 6nvgcl 22100 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  C  e.  X )  ->  (
( A G B ) G C )  e.  X )
1072, 74, 4, 106mp3an 1280 . . . . . . . . . 10  |-  ( ( A G B ) G C )  e.  X
1085, 8, 2, 107nvcli 22150 . . . . . . . . 9  |-  ( N `
 ( ( A G B ) G C ) )  e.  RR
109108resqcli 11468 . . . . . . . 8  |-  ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  e.  RR
110109recni 9103 . . . . . . 7  |-  ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  e.  CC
1115, 6nvgcl 22100 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( -u
1 S C )  e.  X )  -> 
( ( A G B ) G (
-u 1 S C ) )  e.  X
)
1122, 74, 26, 111mp3an 1280 . . . . . . . . . 10  |-  ( ( A G B ) G ( -u 1 S C ) )  e.  X
1135, 8, 2, 112nvcli 22150 . . . . . . . . 9  |-  ( N `
 ( ( A G B ) G ( -u 1 S C ) ) )  e.  RR
114113resqcli 11468 . . . . . . . 8  |-  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 )  e.  RR
115114recni 9103 . . . . . . 7  |-  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 )  e.  CC
116110, 115subcli 9377 . . . . . 6  |-  ( ( ( N `  (
( A G B ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  e.  CC
1175, 6nvgcl 22100 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  C  e.  X )  ->  (
( A G (
-u 1 S B ) ) G C )  e.  X )
1182, 89, 4, 117mp3an 1280 . . . . . . . . . 10  |-  ( ( A G ( -u
1 S B ) ) G C )  e.  X
1195, 8, 2, 118nvcli 22150 . . . . . . . . 9  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G C ) )  e.  RR
120119resqcli 11468 . . . . . . . 8  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  e.  RR
121120recni 9103 . . . . . . 7  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  e.  CC
1225, 6nvgcl 22100 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  ( -u
1 S C )  e.  X )  -> 
( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) )  e.  X )
1232, 89, 26, 122mp3an 1280 . . . . . . . . . 10  |-  ( ( A G ( -u
1 S B ) ) G ( -u
1 S C ) )  e.  X
1245, 8, 2, 123nvcli 22150 . . . . . . . . 9  |-  ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) )  e.  RR
125124resqcli 11468 . . . . . . . 8  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u
1 S C ) ) ) ^ 2 )  e.  RR
126125recni 9103 . . . . . . 7  |-  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u
1 S C ) ) ) ^ 2 )  e.  CC
127121, 126subcli 9377 . . . . . 6  |-  ( ( ( N `  (
( A G (
-u 1 S B ) ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G ( -u
1 S B ) ) G ( -u
1 S C ) ) ) ^ 2 ) )  e.  CC
12833, 85mulcli 9096 . . . . . 6  |-  ( _i  x.  ( ( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G (
-u _i S C ) ) ) ^
2 ) ) )  e.  CC
12933, 100mulcli 9096 . . . . . 6  |-  ( _i  x.  ( ( ( N `  ( ( A G ( -u
1 S B ) ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u _i S C ) ) ) ^ 2 ) ) )  e.  CC
130116, 127, 128, 129add4i 9286 . . . . 5  |-  ( ( ( ( ( N `
 ( ( A G B ) G C ) ) ^
2 )  -  (
( N `  (
( A G B ) G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( ( ( N `  ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u 1 S C ) ) ) ^
2 ) ) )  +  ( ( _i  x.  ( ( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G (
-u _i S C ) ) ) ^
2 ) ) )  +  ( _i  x.  ( ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) ) )  =  ( ( ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G (
-u 1 S C ) ) ) ^
2 ) )  +  ( _i  x.  (
( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )  +  ( ( ( ( N `
 ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u 1 S C ) ) ) ^
2 ) )  +  ( _i  x.  (
( ( N `  ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) ) )
1315, 9dipcl 22212 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  C  e.  X )  ->  (
( A G B ) P C )  e.  CC )
1322, 74, 4, 131mp3an 1280 . . . . . . 7  |-  ( ( A G B ) P C )  e.  CC
1335, 9dipcl 22212 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  C  e.  X )  ->  (
( A G (
-u 1 S B ) ) P C )  e.  CC )
1342, 89, 4, 133mp3an 1280 . . . . . . 7  |-  ( ( A G ( -u
1 S B ) ) P C )  e.  CC
13514, 132, 134adddii 9101 . . . . . 6  |-  ( 4  x.  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) ) )  =  ( ( 4  x.  ( ( A G B ) P C ) )  +  ( 4  x.  (
( A G (
-u 1 S B ) ) P C ) ) )
1365, 6, 7, 8, 94ipval2 22205 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  C  e.  X )  ->  (
4  x.  ( ( A G B ) P C ) )  =  ( ( ( ( N `  (
( A G B ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( ( A G B ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )
1372, 74, 4, 136mp3an 1280 . . . . . . 7  |-  ( 4  x.  ( ( A G B ) P C ) )  =  ( ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G (
-u 1 S C ) ) ) ^
2 ) )  +  ( _i  x.  (
( ( N `  ( ( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )
1385, 6, 7, 8, 94ipval2 22205 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X  /\  C  e.  X )  ->  (
4  x.  ( ( A G ( -u
1 S B ) ) P C ) )  =  ( ( ( ( N `  ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u 1 S C ) ) ) ^
2 ) )  +  ( _i  x.  (
( ( N `  ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) ) )
1392, 89, 4, 138mp3an 1280 . . . . . . 7  |-  ( 4  x.  ( ( A G ( -u 1 S B ) ) P C ) )  =  ( ( ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) )
140137, 139oveq12i 6094 . . . . . 6  |-  ( ( 4  x.  ( ( A G B ) P C ) )  +  ( 4  x.  ( ( A G ( -u 1 S B ) ) P C ) ) )  =  ( ( ( ( ( N `  ( ( A G B ) G C ) ) ^ 2 )  -  ( ( N `  ( ( A G B ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( ( A G B ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )  +  ( ( ( ( N `  ( ( A G ( -u
1 S B ) ) G C ) ) ^ 2 )  -  ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( -u 1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) ) )
141135, 140eqtr2i 2458 . . . . 5  |-  ( ( ( ( ( N `
 ( ( A G B ) G C ) ) ^
2 )  -  (
( N `  (
( A G B ) G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  (
( A G B ) G ( _i S C ) ) ) ^ 2 )  -  ( ( N `
 ( ( A G B ) G ( -u _i S C ) ) ) ^ 2 ) ) ) )  +  ( ( ( ( N `
 ( ( A G ( -u 1 S B ) ) G C ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u 1 S C ) ) ) ^
2 ) )  +  ( _i  x.  (
( ( N `  ( ( A G ( -u 1 S B ) ) G ( _i S C ) ) ) ^
2 )  -  (
( N `  (
( A G (
-u 1 S B ) ) G (
-u _i S C ) ) ) ^
2 ) ) ) ) )  =  ( 4  x.  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) ) )
142105, 130, 1413eqtri 2461 . . . 4  |-  ( 2  x.  ( ( ( ( N `  ( A G C ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S C ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S C ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S C ) ) ) ^ 2 ) ) ) ) )  =  ( 4  x.  ( ( ( A G B ) P C )  +  ( ( A G (
-u 1 S B ) ) P C ) ) )
14312, 17, 1423eqtr3ri 2466 . . 3  |-  ( 4  x.  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) ) )  =  ( 4  x.  ( 2  x.  ( A P C ) ) )
144143oveq1i 6092 . 2  |-  ( ( 4  x.  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) ) )  /  4 )  =  ( ( 4  x.  ( 2  x.  ( A P C ) ) )  /  4 )
145132, 134addcli 9095 . . 3  |-  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) )  e.  CC
146 4re 10074 . . . 4  |-  4  e.  RR
147 4pos 10087 . . . 4  |-  0  <  4
148146, 147gt0ne0ii 9564 . . 3  |-  4  =/=  0
149145, 14, 148divcan3i 9761 . 2  |-  ( ( 4  x.  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) ) )  /  4 )  =  ( ( ( A G B ) P C )  +  ( ( A G (
-u 1 S B ) ) P C ) )
15013, 16mulcli 9096 . . 3  |-  ( 2  x.  ( A P C ) )  e.  CC
151150, 14, 148divcan3i 9761 . 2  |-  ( ( 4  x.  ( 2  x.  ( A P C ) ) )  /  4 )  =  ( 2  x.  ( A P C ) )
152144, 149, 1513eqtr3i 2465 1  |-  ( ( ( A G B ) P C )  +  ( ( A G ( -u 1 S B ) ) P C ) )  =  ( 2  x.  ( A P C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726   ` cfv 5455  (class class class)co 6082   CCcc 8989   1c1 8992   _ici 8993    + caddc 8994    x. cmul 8996    - cmin 9292   -ucneg 9293    / cdiv 9678   2c2 10050   4c4 10052   ^cexp 11383   NrmCVeccnv 22064   +vcpv 22065   BaseSetcba 22066   .s
OLDcns 22067   normCVcnmcv 22070   .i OLDcdip 22197   CPreHil OLDccphlo 22314
This theorem is referenced by:  ip1i  22329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-fz 11045  df-fzo 11137  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-clim 12283  df-sum 12481  df-grpo 21780  df-ablo 21871  df-vc 22026  df-nv 22072  df-va 22075  df-ba 22076  df-sm 22077  df-0v 22078  df-nmcv 22080  df-dip 22198  df-ph 22315
  Copyright terms: Public domain W3C validator