MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eq Unicode version

Theorem ip2eq 16573
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
ip2eq.h  |-  .,  =  ( .i `  W )
ip2eq.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
ip2eq  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  =  B  <->  A. x  e.  V  ( x  .,  A )  =  ( x  .,  B ) ) )
Distinct variable groups:    x, A    x, B    x,  .,    x, V   
x, W

Proof of Theorem ip2eq
StepHypRef Expression
1 oveq2 5882 . . 3  |-  ( A  =  B  ->  (
x  .,  A )  =  ( x  .,  B ) )
21ralrimivw 2640 . 2  |-  ( A  =  B  ->  A. x  e.  V  ( x  .,  A )  =  ( x  .,  B ) )
3 phllmod 16550 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
4 ip2eq.v . . . . . 6  |-  V  =  ( Base `  W
)
5 eqid 2296 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
64, 5lmodvsubcl 15686 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( A ( -g `  W
) B )  e.  V )
73, 6syl3an1 1215 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A ( -g `  W
) B )  e.  V )
8 oveq1 5881 . . . . . 6  |-  ( x  =  ( A (
-g `  W ) B )  ->  (
x  .,  A )  =  ( ( A ( -g `  W
) B )  .,  A ) )
9 oveq1 5881 . . . . . 6  |-  ( x  =  ( A (
-g `  W ) B )  ->  (
x  .,  B )  =  ( ( A ( -g `  W
) B )  .,  B ) )
108, 9eqeq12d 2310 . . . . 5  |-  ( x  =  ( A (
-g `  W ) B )  ->  (
( x  .,  A
)  =  ( x 
.,  B )  <->  ( ( A ( -g `  W
) B )  .,  A )  =  ( ( A ( -g `  W ) B ) 
.,  B ) ) )
1110rspcv 2893 . . . 4  |-  ( ( A ( -g `  W
) B )  e.  V  ->  ( A. x  e.  V  (
x  .,  A )  =  ( x  .,  B )  ->  (
( A ( -g `  W ) B ) 
.,  A )  =  ( ( A (
-g `  W ) B )  .,  B
) ) )
127, 11syl 15 . . 3  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A. x  e.  V  ( x  .,  A )  =  ( x  .,  B )  ->  (
( A ( -g `  W ) B ) 
.,  A )  =  ( ( A (
-g `  W ) B )  .,  B
) ) )
13 simp1 955 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  W  e.  PreHil )
14 simp2 956 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  A  e.  V )
15 simp3 957 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  B  e.  V )
16 eqid 2296 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
17 ip2eq.h . . . . . . . 8  |-  .,  =  ( .i `  W )
18 eqid 2296 . . . . . . . 8  |-  ( -g `  (Scalar `  W )
)  =  ( -g `  (Scalar `  W )
)
1916, 17, 4, 5, 18ipsubdi 16563 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  (
( A ( -g `  W ) B )  e.  V  /\  A  e.  V  /\  B  e.  V ) )  -> 
( ( A (
-g `  W ) B )  .,  ( A ( -g `  W
) B ) )  =  ( ( ( A ( -g `  W
) B )  .,  A ) ( -g `  (Scalar `  W )
) ( ( A ( -g `  W
) B )  .,  B ) ) )
2013, 7, 14, 15, 19syl13anc 1184 . . . . . 6  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( A ( -g `  W ) B ) 
.,  ( A (
-g `  W ) B ) )  =  ( ( ( A ( -g `  W
) B )  .,  A ) ( -g `  (Scalar `  W )
) ( ( A ( -g `  W
) B )  .,  B ) ) )
2120eqeq1d 2304 . . . . 5  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( ( A (
-g `  W ) B )  .,  ( A ( -g `  W
) B ) )  =  ( 0g `  (Scalar `  W ) )  <-> 
( ( ( A ( -g `  W
) B )  .,  A ) ( -g `  (Scalar `  W )
) ( ( A ( -g `  W
) B )  .,  B ) )  =  ( 0g `  (Scalar `  W ) ) ) )
22 eqid 2296 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
23 eqid 2296 . . . . . . 7  |-  ( 0g
`  W )  =  ( 0g `  W
)
2416, 17, 4, 22, 23ipeq0 16558 . . . . . 6  |-  ( ( W  e.  PreHil  /\  ( A ( -g `  W
) B )  e.  V )  ->  (
( ( A (
-g `  W ) B )  .,  ( A ( -g `  W
) B ) )  =  ( 0g `  (Scalar `  W ) )  <-> 
( A ( -g `  W ) B )  =  ( 0g `  W ) ) )
2513, 7, 24syl2anc 642 . . . . 5  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( ( A (
-g `  W ) B )  .,  ( A ( -g `  W
) B ) )  =  ( 0g `  (Scalar `  W ) )  <-> 
( A ( -g `  W ) B )  =  ( 0g `  W ) ) )
2621, 25bitr3d 246 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( ( ( A ( -g `  W
) B )  .,  A ) ( -g `  (Scalar `  W )
) ( ( A ( -g `  W
) B )  .,  B ) )  =  ( 0g `  (Scalar `  W ) )  <->  ( A
( -g `  W ) B )  =  ( 0g `  W ) ) )
2733ad2ant1 976 . . . . . 6  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  W  e.  LMod )
2816lmodfgrp 15652 . . . . . 6  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
2927, 28syl 15 . . . . 5  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (Scalar `  W )  e.  Grp )
30 eqid 2296 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3116, 17, 4, 30ipcl 16553 . . . . . 6  |-  ( ( W  e.  PreHil  /\  ( A ( -g `  W
) B )  e.  V  /\  A  e.  V )  ->  (
( A ( -g `  W ) B ) 
.,  A )  e.  ( Base `  (Scalar `  W ) ) )
3213, 7, 14, 31syl3anc 1182 . . . . 5  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( A ( -g `  W ) B ) 
.,  A )  e.  ( Base `  (Scalar `  W ) ) )
3316, 17, 4, 30ipcl 16553 . . . . . 6  |-  ( ( W  e.  PreHil  /\  ( A ( -g `  W
) B )  e.  V  /\  B  e.  V )  ->  (
( A ( -g `  W ) B ) 
.,  B )  e.  ( Base `  (Scalar `  W ) ) )
3413, 7, 15, 33syl3anc 1182 . . . . 5  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( A ( -g `  W ) B ) 
.,  B )  e.  ( Base `  (Scalar `  W ) ) )
3530, 22, 18grpsubeq0 14568 . . . . 5  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( ( A ( -g `  W
) B )  .,  A )  e.  (
Base `  (Scalar `  W
) )  /\  (
( A ( -g `  W ) B ) 
.,  B )  e.  ( Base `  (Scalar `  W ) ) )  ->  ( ( ( ( A ( -g `  W ) B ) 
.,  A ) (
-g `  (Scalar `  W
) ) ( ( A ( -g `  W
) B )  .,  B ) )  =  ( 0g `  (Scalar `  W ) )  <->  ( ( A ( -g `  W
) B )  .,  A )  =  ( ( A ( -g `  W ) B ) 
.,  B ) ) )
3629, 32, 34, 35syl3anc 1182 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( ( ( A ( -g `  W
) B )  .,  A ) ( -g `  (Scalar `  W )
) ( ( A ( -g `  W
) B )  .,  B ) )  =  ( 0g `  (Scalar `  W ) )  <->  ( ( A ( -g `  W
) B )  .,  A )  =  ( ( A ( -g `  W ) B ) 
.,  B ) ) )
37 lmodgrp 15650 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Grp )
383, 37syl 15 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  Grp )
394, 23, 5grpsubeq0 14568 . . . . 5  |-  ( ( W  e.  Grp  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A (
-g `  W ) B )  =  ( 0g `  W )  <-> 
A  =  B ) )
4038, 39syl3an1 1215 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( A ( -g `  W ) B )  =  ( 0g `  W )  <->  A  =  B ) )
4126, 36, 403bitr3d 274 . . 3  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  (
( ( A (
-g `  W ) B )  .,  A
)  =  ( ( A ( -g `  W
) B )  .,  B )  <->  A  =  B ) )
4212, 41sylibd 205 . 2  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A. x  e.  V  ( x  .,  A )  =  ( x  .,  B )  ->  A  =  B ) )
432, 42impbid2 195 1  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  =  B  <->  A. x  e.  V  ( x  .,  A )  =  ( x  .,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   ` cfv 5271  (class class class)co 5874   Basecbs 13164  Scalarcsca 13227   .icip 13229   0gc0g 13416   Grpcgrp 14378   -gcsg 14381   LModclmod 15643   PreHilcphl 16544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-0g 13420  df-mnd 14383  df-mhm 14431  df-grp 14505  df-minusg 14506  df-sbg 14507  df-ghm 14697  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-rnghom 15512  df-staf 15626  df-srng 15627  df-lmod 15645  df-lmhm 15795  df-lvec 15872  df-sra 15941  df-rgmod 15942  df-phl 16546
  Copyright terms: Public domain W3C validator