MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipass Structured version   Unicode version

Theorem ipass 16877
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ipdir.f  |-  K  =  ( Base `  F
)
ipass.s  |-  .x.  =  ( .s `  W )
ipass.p  |-  .X.  =  ( .r `  F )
Assertion
Ref Expression
ipass  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .x.  B )  .,  C )  =  ( A  .X.  ( B  .,  C ) ) )

Proof of Theorem ipass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . 5  |-  F  =  (Scalar `  W )
2 phllmhm.h . . . . 5  |-  .,  =  ( .i `  W )
3 phllmhm.v . . . . 5  |-  V  =  ( Base `  W
)
4 eqid 2437 . . . . 5  |-  ( x  e.  V  |->  ( x 
.,  C ) )  =  ( x  e.  V  |->  ( x  .,  C ) )
51, 2, 3, 4phllmhm 16864 . . . 4  |-  ( ( W  e.  PreHil  /\  C  e.  V )  ->  (
x  e.  V  |->  ( x  .,  C ) )  e.  ( W LMHom 
(ringLMod `  F ) ) )
653ad2antr3 1125 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( x  e.  V  |->  ( x 
.,  C ) )  e.  ( W LMHom  (ringLMod `  F ) ) )
7 simpr1 964 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  A  e.  K )
8 simpr2 965 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
9 ipdir.f . . . 4  |-  K  =  ( Base `  F
)
10 ipass.s . . . 4  |-  .x.  =  ( .s `  W )
11 ipass.p . . . . 5  |-  .X.  =  ( .r `  F )
12 rlmvsca 16274 . . . . 5  |-  ( .r
`  F )  =  ( .s `  (ringLMod `  F ) )
1311, 12eqtri 2457 . . . 4  |-  .X.  =  ( .s `  (ringLMod `  F
) )
141, 9, 3, 10, 13lmhmlin 16112 . . 3  |-  ( ( ( x  e.  V  |->  ( x  .,  C
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  A  e.  K  /\  B  e.  V
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.x.  B ) )  =  ( A  .X.  ( ( x  e.  V  |->  ( x  .,  C ) ) `  B ) ) )
156, 7, 8, 14syl3anc 1185 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.x.  B ) )  =  ( A  .X.  ( ( x  e.  V  |->  ( x  .,  C ) ) `  B ) ) )
16 phllmod 16862 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
1716adantr 453 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  W  e.  LMod )
183, 1, 10, 9lmodvscl 15968 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  B  e.  V )  ->  ( A  .x.  B )  e.  V )
1917, 7, 8, 18syl3anc 1185 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .x.  B )  e.  V
)
20 oveq1 6089 . . . 4  |-  ( x  =  ( A  .x.  B )  ->  (
x  .,  C )  =  ( ( A 
.x.  B )  .,  C ) )
21 ovex 6107 . . . 4  |-  ( x 
.,  C )  e. 
_V
2220, 4, 21fvmpt3i 5810 . . 3  |-  ( ( A  .x.  B )  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  ( A  .x.  B ) )  =  ( ( A 
.x.  B )  .,  C ) )
2319, 22syl 16 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  ( A 
.x.  B ) )  =  ( ( A 
.x.  B )  .,  C ) )
24 oveq1 6089 . . . . 5  |-  ( x  =  B  ->  (
x  .,  C )  =  ( B  .,  C ) )
2524, 4, 21fvmpt3i 5810 . . . 4  |-  ( B  e.  V  ->  (
( x  e.  V  |->  ( x  .,  C
) ) `  B
)  =  ( B 
.,  C ) )
268, 25syl 16 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
x  e.  V  |->  ( x  .,  C ) ) `  B )  =  ( B  .,  C ) )
2726oveq2d 6098 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .X.  ( ( x  e.  V  |->  ( x  .,  C ) ) `  B ) )  =  ( A  .X.  ( B  .,  C ) ) )
2815, 23, 273eqtr3d 2477 1  |-  ( ( W  e.  PreHil  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .x.  B )  .,  C )  =  ( A  .X.  ( B  .,  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    e. cmpt 4267   ` cfv 5455  (class class class)co 6082   Basecbs 13470   .rcmulr 13531  Scalarcsca 13533   .scvsca 13534   .icip 13535   LModclmod 15951   LMHom clmhm 16096  ringLModcrglmod 16242   PreHilcphl 16856
This theorem is referenced by:  ipassr  16878  ocvlss  16900  cphass  19174  ipcau2  19192  tchcphlem2  19194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-i2m1 9059  ax-1ne0 9060  ax-rrecex 9063  ax-cnre 9064
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-recs 6634  df-rdg 6669  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-ndx 13473  df-slot 13474  df-sets 13476  df-vsca 13547  df-lmod 15953  df-lmhm 16099  df-lvec 16176  df-sra 16245  df-rgmod 16246  df-phl 16858
  Copyright terms: Public domain W3C validator