MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassi Unicode version

Theorem ipassi 22191
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
Assertion
Ref Expression
ipassi  |-  ( ( A  e.  CC  /\  B  e.  X  /\  C  e.  X )  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) )

Proof of Theorem ipassi
StepHypRef Expression
1 oveq2 6029 . . . . . . 7  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( A S B )  =  ( A S if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) )
21oveq1d 6036 . . . . . 6  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( A S B ) P C )  =  ( ( A S if ( B  e.  X ,  B ,  ( 0vec `  U
) ) ) P C ) )
3 oveq1 6028 . . . . . . 7  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( B P C )  =  ( if ( B  e.  X ,  B ,  ( 0vec `  U
) ) P C ) )
43oveq2d 6037 . . . . . 6  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  ( A  x.  ( B P C ) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) )
52, 4eqeq12d 2402 . . . . 5  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( ( A S B ) P C )  =  ( A  x.  ( B P C ) )  <->  ( ( A S if ( B  e.  X ,  B ,  ( 0vec `  U
) ) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) ) )
65imbi2d 308 . . . 4  |-  ( B  =  if ( B  e.  X ,  B ,  ( 0vec `  U
) )  ->  (
( A  e.  CC  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) )  <-> 
( A  e.  CC  ->  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) ) ) )
7 oveq2 6029 . . . . . 6  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( A S if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) P C )  =  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
8 oveq2 6029 . . . . . . 7  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C )  =  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) )
98oveq2d 6037 . . . . . 6  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) ) ) )
107, 9eqeq12d 2402 . . . . 5  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) )  <->  ( ( A S if ( B  e.  X ,  B ,  ( 0vec `  U
) ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) ) ) ) )
1110imbi2d 308 . . . 4  |-  ( C  =  if ( C  e.  X ,  C ,  ( 0vec `  U
) )  ->  (
( A  e.  CC  ->  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P C )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P C ) ) )  <-> 
( A  e.  CC  ->  ( ( A S if ( B  e.  X ,  B , 
( 0vec `  U )
) ) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) )  =  ( A  x.  ( if ( B  e.  X ,  B , 
( 0vec `  U )
) P if ( C  e.  X ,  C ,  ( 0vec `  U ) ) ) ) ) ) )
12 ip1i.1 . . . . 5  |-  X  =  ( BaseSet `  U )
13 ip1i.2 . . . . 5  |-  G  =  ( +v `  U
)
14 ip1i.4 . . . . 5  |-  S  =  ( .s OLD `  U
)
15 ip1i.7 . . . . 5  |-  P  =  ( .i OLD `  U
)
16 ip1i.9 . . . . 5  |-  U  e.  CPreHil
OLD
17 eqid 2388 . . . . . 6  |-  ( 0vec `  U )  =  (
0vec `  U )
1812, 17, 16elimph 22170 . . . . 5  |-  if ( B  e.  X ,  B ,  ( 0vec `  U ) )  e.  X
1912, 17, 16elimph 22170 . . . . 5  |-  if ( C  e.  X ,  C ,  ( 0vec `  U ) )  e.  X
2012, 13, 14, 15, 16, 18, 19ipasslem11 22190 . . . 4  |-  ( A  e.  CC  ->  (
( A S if ( B  e.  X ,  B ,  ( 0vec `  U ) ) ) P if ( C  e.  X ,  C ,  ( 0vec `  U
) ) )  =  ( A  x.  ( if ( B  e.  X ,  B ,  ( 0vec `  U ) ) P if ( C  e.  X ,  C , 
( 0vec `  U )
) ) ) )
216, 11, 20dedth2h 3725 . . 3  |-  ( ( B  e.  X  /\  C  e.  X )  ->  ( A  e.  CC  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) ) )
2221com12 29 . 2  |-  ( A  e.  CC  ->  (
( B  e.  X  /\  C  e.  X
)  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) ) )
23223impib 1151 1  |-  ( ( A  e.  CC  /\  B  e.  X  /\  C  e.  X )  ->  ( ( A S B ) P C )  =  ( A  x.  ( B P C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ifcif 3683   ` cfv 5395  (class class class)co 6021   CCcc 8922    x. cmul 8929   +vcpv 21913   BaseSetcba 21914   .s
OLDcns 21915   0veccn0v 21916   .i
OLDcdip 22045   CPreHil OLDccphlo 22162
This theorem is referenced by:  dipass  22195  ipblnfi  22206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-icc 10856  df-fz 10977  df-fzo 11067  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-sum 12408  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-cn 17214  df-cnp 17215  df-t1 17301  df-haus 17302  df-tx 17516  df-hmeo 17709  df-xms 18260  df-ms 18261  df-tms 18262  df-grpo 21628  df-gid 21629  df-ginv 21630  df-gdiv 21631  df-ablo 21719  df-vc 21874  df-nv 21920  df-va 21923  df-ba 21924  df-sm 21925  df-0v 21926  df-vs 21927  df-nmcv 21928  df-ims 21929  df-dip 22046  df-ph 22163
  Copyright terms: Public domain W3C validator