MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Unicode version

Theorem ipasslem1 21409
Description: Lemma for ipassi 21419. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
ipasslem1.b  |-  B  e.  X
Assertion
Ref Expression
ipasslem1  |-  ( ( N  e.  NN0  /\  A  e.  X )  ->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) )

Proof of Theorem ipasslem1
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 9975 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  CC )
2 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
3 ip1i.9 . . . . . . . . . . . . . 14  |-  U  e.  CPreHil
OLD
43phnvi 21394 . . . . . . . . . . . . 13  |-  U  e.  NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14  |-  X  =  ( BaseSet `  U )
6 ip1i.2 . . . . . . . . . . . . . 14  |-  G  =  ( +v `  U
)
7 ip1i.4 . . . . . . . . . . . . . 14  |-  S  =  ( .s OLD `  U
)
85, 6, 7nvdir 21189 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
k  e.  CC  /\  1  e.  CC  /\  A  e.  X ) )  -> 
( ( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
94, 8mpan 651 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  X )  ->  (
( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
102, 9mp3an2 1265 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  A  e.  X )  ->  ( ( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
111, 10sylan 457 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k  +  1 ) S A )  =  ( ( k S A ) G ( 1 S A ) ) )
125, 7nvsid 21185 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
134, 12mpan 651 . . . . . . . . . . . 12  |-  ( A  e.  X  ->  (
1 S A )  =  A )
1413adantl 452 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( 1 S A )  =  A )
1514oveq2d 5874 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k S A ) G ( 1 S A ) )  =  ( ( k S A ) G A ) )
1611, 15eqtrd 2315 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k  +  1 ) S A )  =  ( ( k S A ) G A ) )
1716oveq1d 5873 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k  +  1 ) S A ) P B )  =  ( ( ( k S A ) G A ) P B ) )
18 ipasslem1.b . . . . . . . . . . . . 13  |-  B  e.  X
19 ip1i.7 . . . . . . . . . . . . . 14  |-  P  =  ( .i OLD `  U
)
205, 19dipcl 21288 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  e.  CC )
214, 18, 20mp3an13 1268 . . . . . . . . . . . 12  |-  ( A  e.  X  ->  ( A P B )  e.  CC )
2221mulid2d 8853 . . . . . . . . . . 11  |-  ( A  e.  X  ->  (
1  x.  ( A P B ) )  =  ( A P B ) )
2322adantl 452 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( 1  x.  ( A P B ) )  =  ( A P B ) )
2423oveq2d 5874 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
255, 7nvscl 21184 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  k  e.  CC  /\  A  e.  X )  ->  (
k S A )  e.  X )
264, 25mp3an1 1264 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  A  e.  X )  ->  ( k S A )  e.  X )
271, 26sylan 457 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( k S A )  e.  X )
285, 6, 7, 19, 3ipdiri 21408 . . . . . . . . . . 11  |-  ( ( ( k S A )  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( ( ( k S A ) G A ) P B )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
2918, 28mp3an3 1266 . . . . . . . . . 10  |-  ( ( ( k S A )  e.  X  /\  A  e.  X )  ->  ( ( ( k S A ) G A ) P B )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
3027, 29sylancom 648 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k S A ) G A ) P B )  =  ( ( ( k S A ) P B )  +  ( A P B ) ) )
3124, 30eqtr4d 2318 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) )  =  ( ( ( k S A ) G A ) P B ) )
3217, 31eqtr4d 2318 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( ( k  +  1 ) S A ) P B )  =  ( ( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) ) )
33 oveq1 5865 . . . . . . 7  |-  ( ( ( k S A ) P B )  =  ( k  x.  ( A P B ) )  ->  (
( ( k S A ) P B )  +  ( 1  x.  ( A P B ) ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
3432, 33sylan9eq 2335 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  X )  /\  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
35 adddir 8830 . . . . . . . . 9  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  ( A P B )  e.  CC )  ->  (
( k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
362, 35mp3an2 1265 . . . . . . . 8  |-  ( ( k  e.  CC  /\  ( A P B )  e.  CC )  -> 
( ( k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
371, 21, 36syl2an 463 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  X )  ->  ( ( k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
3837adantr 451 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  X )  /\  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( (
k  +  1 )  x.  ( A P B ) )  =  ( ( k  x.  ( A P B ) )  +  ( 1  x.  ( A P B ) ) ) )
3934, 38eqtr4d 2318 . . . . 5  |-  ( ( ( k  e.  NN0  /\  A  e.  X )  /\  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) )
4039exp31 587 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  X  ->  (
( ( k S A ) P B )  =  ( k  x.  ( A P B ) )  -> 
( ( ( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) ) )
4140a2d 23 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  X  -> 
( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) )  ->  ( A  e.  X  ->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) ) )
42 eqid 2283 . . . . . 6  |-  ( 0vec `  U )  =  (
0vec `  U )
435, 42, 19dip0l 21294 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( 0vec `  U ) P B )  =  0 )
444, 18, 43mp2an 653 . . . 4  |-  ( (
0vec `  U ) P B )  =  0
455, 7, 42nv0 21195 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0 S A )  =  ( 0vec `  U
) )
464, 45mpan 651 . . . . 5  |-  ( A  e.  X  ->  (
0 S A )  =  ( 0vec `  U
) )
4746oveq1d 5873 . . . 4  |-  ( A  e.  X  ->  (
( 0 S A ) P B )  =  ( ( 0vec `  U ) P B ) )
4821mul02d 9010 . . . 4  |-  ( A  e.  X  ->  (
0  x.  ( A P B ) )  =  0 )
4944, 47, 483eqtr4a 2341 . . 3  |-  ( A  e.  X  ->  (
( 0 S A ) P B )  =  ( 0  x.  ( A P B ) ) )
50 oveq1 5865 . . . . . 6  |-  ( j  =  0  ->  (
j S A )  =  ( 0 S A ) )
5150oveq1d 5873 . . . . 5  |-  ( j  =  0  ->  (
( j S A ) P B )  =  ( ( 0 S A ) P B ) )
52 oveq1 5865 . . . . 5  |-  ( j  =  0  ->  (
j  x.  ( A P B ) )  =  ( 0  x.  ( A P B ) ) )
5351, 52eqeq12d 2297 . . . 4  |-  ( j  =  0  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( (
0 S A ) P B )  =  ( 0  x.  ( A P B ) ) ) )
5453imbi2d 307 . . 3  |-  ( j  =  0  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( 0 S A ) P B )  =  ( 0  x.  ( A P B ) ) ) ) )
55 oveq1 5865 . . . . . 6  |-  ( j  =  k  ->  (
j S A )  =  ( k S A ) )
5655oveq1d 5873 . . . . 5  |-  ( j  =  k  ->  (
( j S A ) P B )  =  ( ( k S A ) P B ) )
57 oveq1 5865 . . . . 5  |-  ( j  =  k  ->  (
j  x.  ( A P B ) )  =  ( k  x.  ( A P B ) ) )
5856, 57eqeq12d 2297 . . . 4  |-  ( j  =  k  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( (
k S A ) P B )  =  ( k  x.  ( A P B ) ) ) )
5958imbi2d 307 . . 3  |-  ( j  =  k  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( k S A ) P B )  =  ( k  x.  ( A P B ) ) ) ) )
60 oveq1 5865 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
j S A )  =  ( ( k  +  1 ) S A ) )
6160oveq1d 5873 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( j S A ) P B )  =  ( ( ( k  +  1 ) S A ) P B ) )
62 oveq1 5865 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
j  x.  ( A P B ) )  =  ( ( k  +  1 )  x.  ( A P B ) ) )
6361, 62eqeq12d 2297 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( (
( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) )
6463imbi2d 307 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( ( k  +  1 ) S A ) P B )  =  ( ( k  +  1 )  x.  ( A P B ) ) ) ) )
65 oveq1 5865 . . . . . 6  |-  ( j  =  N  ->  (
j S A )  =  ( N S A ) )
6665oveq1d 5873 . . . . 5  |-  ( j  =  N  ->  (
( j S A ) P B )  =  ( ( N S A ) P B ) )
67 oveq1 5865 . . . . 5  |-  ( j  =  N  ->  (
j  x.  ( A P B ) )  =  ( N  x.  ( A P B ) ) )
6866, 67eqeq12d 2297 . . . 4  |-  ( j  =  N  ->  (
( ( j S A ) P B )  =  ( j  x.  ( A P B ) )  <->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) ) )
6968imbi2d 307 . . 3  |-  ( j  =  N  ->  (
( A  e.  X  ->  ( ( j S A ) P B )  =  ( j  x.  ( A P B ) ) )  <-> 
( A  e.  X  ->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) ) ) )
7041, 49, 54, 59, 64, 69nn0indALT 10109 . 2  |-  ( N  e.  NN0  ->  ( A  e.  X  ->  (
( N S A ) P B )  =  ( N  x.  ( A P B ) ) ) )
7170imp 418 1  |-  ( ( N  e.  NN0  /\  A  e.  X )  ->  ( ( N S A ) P B )  =  ( N  x.  ( A P B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NN0cn0 9965   NrmCVeccnv 21140   +vcpv 21141   BaseSetcba 21142   .s
OLDcns 21143   0veccn0v 21144   .i
OLDcdip 21273   CPreHil OLDccphlo 21390
This theorem is referenced by:  ipasslem2  21410  ipasslem3  21411  ipasslem4  21412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-grpo 20858  df-gid 20859  df-ginv 20860  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-dip 21274  df-ph 21391
  Copyright terms: Public domain W3C validator