MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem10 Unicode version

Theorem ipasslem10 21531
Description: Lemma for ipassi 21533. Show the inner product associative law for the imaginary number  _i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1  |-  X  =  ( BaseSet `  U )
ip1i.2  |-  G  =  ( +v `  U
)
ip1i.4  |-  S  =  ( .s OLD `  U
)
ip1i.7  |-  P  =  ( .i OLD `  U
)
ip1i.9  |-  U  e.  CPreHil
OLD
ipasslem10.a  |-  A  e.  X
ipasslem10.b  |-  B  e.  X
ipasslem10.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
ipasslem10  |-  ( ( _i S A ) P B )  =  ( _i  x.  ( A P B ) )

Proof of Theorem ipasslem10
StepHypRef Expression
1 ip1i.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
21phnvi 21508 . . . . . 6  |-  U  e.  NrmCVec
3 ipasslem10.b . . . . . 6  |-  B  e.  X
4 ax-icn 8886 . . . . . . 7  |-  _i  e.  CC
5 ipasslem10.a . . . . . . 7  |-  A  e.  X
6 ip1i.1 . . . . . . . 8  |-  X  =  ( BaseSet `  U )
7 ip1i.4 . . . . . . . 8  |-  S  =  ( .s OLD `  U
)
86, 7nvscl 21298 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  A  e.  X )  ->  (
_i S A )  e.  X )
92, 4, 5, 8mp3an 1277 . . . . . 6  |-  ( _i S A )  e.  X
10 ip1i.2 . . . . . . 7  |-  G  =  ( +v `  U
)
11 ipasslem10.6 . . . . . . 7  |-  N  =  ( normCV `  U )
12 ip1i.7 . . . . . . 7  |-  P  =  ( .i OLD `  U
)
136, 10, 7, 11, 124ipval2 21395 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( 4  x.  ( B P ( _i S A ) ) )  =  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) )
142, 3, 9, 13mp3an 1277 . . . . 5  |-  ( 4  x.  ( B P ( _i S A ) ) )  =  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )
15 4re 9909 . . . . . . . 8  |-  4  e.  RR
1615recni 8939 . . . . . . 7  |-  4  e.  CC
174negcli 9204 . . . . . . 7  |-  -u _i  e.  CC
186, 12dipcl 21402 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  e.  CC )
192, 3, 5, 18mp3an 1277 . . . . . . 7  |-  ( B P A )  e.  CC
2016, 17, 19mul12i 9097 . . . . . 6  |-  ( 4  x.  ( -u _i  x.  ( B P A ) ) )  =  ( -u _i  x.  ( 4  x.  ( B P A ) ) )
216, 10nvgcl 21290 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( B G ( _i S A ) )  e.  X )
222, 3, 9, 21mp3an 1277 . . . . . . . . . . . . 13  |-  ( B G ( _i S A ) )  e.  X
236, 11, 2, 22nvcli 21340 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( _i S A ) ) )  e.  RR
2423recni 8939 . . . . . . . . . . 11  |-  ( N `
 ( B G ( _i S A ) ) )  e.  CC
2524sqcli 11277 . . . . . . . . . 10  |-  ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  e.  CC
26 neg1cn 9903 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
276, 7nvscl 21298 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  ( _i S A )  e.  X )  ->  ( -u 1 S ( _i S A ) )  e.  X )
282, 26, 9, 27mp3an 1277 . . . . . . . . . . . . . 14  |-  ( -u
1 S ( _i S A ) )  e.  X
296, 10nvgcl 21290 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u 1 S ( _i S A ) )  e.  X )  -> 
( B G (
-u 1 S ( _i S A ) ) )  e.  X
)
302, 3, 28, 29mp3an 1277 . . . . . . . . . . . . 13  |-  ( B G ( -u 1 S ( _i S A ) ) )  e.  X
316, 11, 2, 30nvcli 21340 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) )  e.  RR
3231recni 8939 . . . . . . . . . . 11  |-  ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) )  e.  CC
3332sqcli 11277 . . . . . . . . . 10  |-  ( ( N `  ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 )  e.  CC
3425, 33subcli 9212 . . . . . . . . 9  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  e.  CC
356, 7nvscl 21298 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  ( _i S A )  e.  X )  ->  (
_i S ( _i S A ) )  e.  X )
362, 4, 9, 35mp3an 1277 . . . . . . . . . . . . . . 15  |-  ( _i S ( _i S A ) )  e.  X
376, 10nvgcl 21290 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S ( _i S A ) )  e.  X )  -> 
( B G ( _i S ( _i S A ) ) )  e.  X )
382, 3, 36, 37mp3an 1277 . . . . . . . . . . . . . 14  |-  ( B G ( _i S
( _i S A ) ) )  e.  X
396, 11, 2, 38nvcli 21340 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( _i S ( _i S A ) ) ) )  e.  RR
4039recni 8939 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( _i S ( _i S A ) ) ) )  e.  CC
4140sqcli 11277 . . . . . . . . . . 11  |-  ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  e.  CC
426, 7nvscl 21298 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  ( _i S A )  e.  X )  ->  ( -u _i S ( _i S A ) )  e.  X )
432, 17, 9, 42mp3an 1277 . . . . . . . . . . . . . . 15  |-  ( -u _i S ( _i S A ) )  e.  X
446, 10nvgcl 21290 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u _i S ( _i S A ) )  e.  X )  -> 
( B G (
-u _i S ( _i S A ) ) )  e.  X
)
452, 3, 43, 44mp3an 1277 . . . . . . . . . . . . . 14  |-  ( B G ( -u _i S ( _i S A ) ) )  e.  X
466, 11, 2, 45nvcli 21340 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( -u _i S
( _i S A ) ) ) )  e.  RR
4746recni 8939 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( -u _i S
( _i S A ) ) ) )  e.  CC
4847sqcli 11277 . . . . . . . . . . 11  |-  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 )  e.  CC
4941, 48subcli 9212 . . . . . . . . . 10  |-  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) )  e.  CC
504, 49mulcli 8932 . . . . . . . . 9  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  e.  CC
5134, 50addcomi 9093 . . . . . . . 8  |-  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )  =  ( ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  +  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) )
526, 10nvgcl 21290 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B G A )  e.  X )
532, 3, 5, 52mp3an 1277 . . . . . . . . . . . . . 14  |-  ( B G A )  e.  X
546, 11, 2, 53nvcli 21340 . . . . . . . . . . . . 13  |-  ( N `
 ( B G A ) )  e.  RR
5554recni 8939 . . . . . . . . . . . 12  |-  ( N `
 ( B G A ) )  e.  CC
5655sqcli 11277 . . . . . . . . . . 11  |-  ( ( N `  ( B G A ) ) ^ 2 )  e.  CC
576, 7nvscl 21298 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X )
582, 26, 5, 57mp3an 1277 . . . . . . . . . . . . . . 15  |-  ( -u
1 S A )  e.  X
596, 10nvgcl 21290 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u 1 S A )  e.  X )  -> 
( B G (
-u 1 S A ) )  e.  X
)
602, 3, 58, 59mp3an 1277 . . . . . . . . . . . . . 14  |-  ( B G ( -u 1 S A ) )  e.  X
616, 11, 2, 60nvcli 21340 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( -u 1 S A ) ) )  e.  RR
6261recni 8939 . . . . . . . . . . . 12  |-  ( N `
 ( B G ( -u 1 S A ) ) )  e.  CC
6362sqcli 11277 . . . . . . . . . . 11  |-  ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  e.  CC
6456, 63subcli 9212 . . . . . . . . . 10  |-  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  e.  CC
656, 7nvscl 21298 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  A  e.  X )  ->  ( -u _i S A )  e.  X )
662, 17, 5, 65mp3an 1277 . . . . . . . . . . . . . . . 16  |-  ( -u _i S A )  e.  X
676, 10nvgcl 21290 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( -u _i S A )  e.  X )  -> 
( B G (
-u _i S A ) )  e.  X
)
682, 3, 66, 67mp3an 1277 . . . . . . . . . . . . . . 15  |-  ( B G ( -u _i S A ) )  e.  X
696, 11, 2, 68nvcli 21340 . . . . . . . . . . . . . 14  |-  ( N `
 ( B G ( -u _i S A ) ) )  e.  RR
7069recni 8939 . . . . . . . . . . . . 13  |-  ( N `
 ( B G ( -u _i S A ) ) )  e.  CC
7170sqcli 11277 . . . . . . . . . . . 12  |-  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 )  e.  CC
7225, 71subcli 9212 . . . . . . . . . . 11  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) )  e.  CC
734, 72mulcli 8932 . . . . . . . . . 10  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  e.  CC
7417, 64, 73adddii 8937 . . . . . . . . 9  |-  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )  =  ( ( -u _i  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  +  ( -u _i  x.  ( _i  x.  (
( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
754, 4, 53pm3.2i 1130 . . . . . . . . . . . . . . . . . 18  |-  ( _i  e.  CC  /\  _i  e.  CC  /\  A  e.  X )
766, 7nvsass 21300 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  (
_i  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( _i  x.  _i ) S A )  =  ( _i S
( _i S A ) ) )
772, 75, 76mp2an 653 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i ) S A )  =  ( _i S ( _i S A ) )
78 ixi 9487 . . . . . . . . . . . . . . . . . 18  |-  ( _i  x.  _i )  = 
-u 1
7978oveq1i 5955 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i ) S A )  =  ( -u 1 S A )
8077, 79eqtr3i 2380 . . . . . . . . . . . . . . . 16  |-  ( _i S ( _i S A ) )  =  ( -u 1 S A )
8180oveq2i 5956 . . . . . . . . . . . . . . 15  |-  ( B G ( _i S
( _i S A ) ) )  =  ( B G (
-u 1 S A ) )
8281fveq2i 5611 . . . . . . . . . . . . . 14  |-  ( N `
 ( B G ( _i S ( _i S A ) ) ) )  =  ( N `  ( B G ( -u 1 S A ) ) )
8382oveq1i 5955 . . . . . . . . . . . . 13  |-  ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  =  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 )
844, 4mulneg1i 9315 . . . . . . . . . . . . . . . . . . 19  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
8578negeqi 9135 . . . . . . . . . . . . . . . . . . 19  |-  -u (
_i  x.  _i )  =  -u -u 1
86 ax-1cn 8885 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
8786negnegi 9206 . . . . . . . . . . . . . . . . . . 19  |-  -u -u 1  =  1
8884, 85, 873eqtri 2382 . . . . . . . . . . . . . . . . . 18  |-  ( -u _i  x.  _i )  =  1
8988oveq1i 5955 . . . . . . . . . . . . . . . . 17  |-  ( (
-u _i  x.  _i ) S A )  =  ( 1 S A )
9017, 4, 53pm3.2i 1130 . . . . . . . . . . . . . . . . . 18  |-  ( -u _i  e.  CC  /\  _i  e.  CC  /\  A  e.  X )
916, 7nvsass 21300 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  ( -u _i  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( -u _i  x.  _i ) S A )  =  ( -u _i S ( _i S A ) ) )
922, 90, 91mp2an 653 . . . . . . . . . . . . . . . . 17  |-  ( (
-u _i  x.  _i ) S A )  =  ( -u _i S
( _i S A ) )
936, 7nvsid 21299 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
942, 5, 93mp2an 653 . . . . . . . . . . . . . . . . 17  |-  ( 1 S A )  =  A
9589, 92, 943eqtr3i 2386 . . . . . . . . . . . . . . . 16  |-  ( -u _i S ( _i S A ) )  =  A
9695oveq2i 5956 . . . . . . . . . . . . . . 15  |-  ( B G ( -u _i S ( _i S A ) ) )  =  ( B G A )
9796fveq2i 5611 . . . . . . . . . . . . . 14  |-  ( N `
 ( B G ( -u _i S
( _i S A ) ) ) )  =  ( N `  ( B G A ) )
9897oveq1i 5955 . . . . . . . . . . . . 13  |-  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 )  =  ( ( N `
 ( B G A ) ) ^
2 )
9983, 98oveq12i 5957 . . . . . . . . . . . 12  |-  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) )  =  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) )
10099oveq2i 5956 . . . . . . . . . . 11  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) ) )
10164mulm1i 9314 . . . . . . . . . . . . . 14  |-  ( -u
1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  = 
-u ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )
10256, 63negsubdi2i 9222 . . . . . . . . . . . . . 14  |-  -u (
( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S A ) ) ) ^ 2 ) )  =  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) )
103101, 102eqtr2i 2379 . . . . . . . . . . . . 13  |-  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) )  =  ( -u
1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )
104103oveq2i 5956 . . . . . . . . . . . 12  |-  ( _i  x.  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) ) )  =  ( _i  x.  ( -u
1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) ) )
1054, 26, 64mulassi 8936 . . . . . . . . . . . 12  |-  ( ( _i  x.  -u 1
)  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( -u 1  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) ) )
106104, 105eqtr4i 2381 . . . . . . . . . . 11  |-  ( _i  x.  ( ( ( N `  ( B G ( -u 1 S A ) ) ) ^ 2 )  -  ( ( N `  ( B G A ) ) ^ 2 ) ) )  =  ( ( _i  x.  -u 1
)  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )
1074mulm1i 9314 . . . . . . . . . . . . 13  |-  ( -u
1  x.  _i )  =  -u _i
10826, 4, 107mulcomli 8934 . . . . . . . . . . . 12  |-  ( _i  x.  -u 1 )  = 
-u _i
109108oveq1i 5955 . . . . . . . . . . 11  |-  ( ( _i  x.  -u 1
)  x.  ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) ) )  =  ( -u _i  x.  ( ( ( N `
 ( B G A ) ) ^
2 )  -  (
( N `  ( B G ( -u 1 S A ) ) ) ^ 2 ) ) )
110100, 106, 1093eqtri 2382 . . . . . . . . . 10  |-  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  =  (
-u _i  x.  (
( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S A ) ) ) ^ 2 ) ) )
11126, 4, 53pm3.2i 1130 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  e.  CC  /\  _i  e.  CC  /\  A  e.  X )
1126, 7nvsass 21300 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  _i  e.  CC  /\  A  e.  X ) )  -> 
( ( -u 1  x.  _i ) S A )  =  ( -u
1 S ( _i S A ) ) )
1132, 111, 112mp2an 653 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  x.  _i ) S A )  =  ( -u 1 S ( _i S A ) )
114107oveq1i 5955 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  x.  _i ) S A )  =  ( -u _i S A )
115113, 114eqtr3i 2380 . . . . . . . . . . . . . . . . 17  |-  ( -u
1 S ( _i S A ) )  =  ( -u _i S A )
116115oveq2i 5956 . . . . . . . . . . . . . . . 16  |-  ( B G ( -u 1 S ( _i S A ) ) )  =  ( B G ( -u _i S A ) )
117116fveq2i 5611 . . . . . . . . . . . . . . 15  |-  ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) )  =  ( N `  ( B G ( -u _i S A ) ) )
118117oveq1i 5955 . . . . . . . . . . . . . 14  |-  ( ( N `  ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 )  =  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 )
119118oveq2i 5956 . . . . . . . . . . . . 13  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) )
12072mulid2i 8930 . . . . . . . . . . . . 13  |-  ( 1  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  =  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) )
121119, 120eqtr4i 2381 . . . . . . . . . . . 12  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  ( 1  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )
12288oveq1i 5955 . . . . . . . . . . . 12  |-  ( (
-u _i  x.  _i )  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  =  ( 1  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )
123121, 122eqtr4i 2381 . . . . . . . . . . 11  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  ( ( -u _i  x.  _i )  x.  (
( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u _i S A ) ) ) ^ 2 ) ) )
12417, 4, 72mulassi 8936 . . . . . . . . . . 11  |-  ( (
-u _i  x.  _i )  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) )  =  (
-u _i  x.  (
_i  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) )
125123, 124eqtri 2378 . . . . . . . . . 10  |-  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  =  (
-u _i  x.  (
_i  x.  ( (
( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) )
126110, 125oveq12i 5957 . . . . . . . . 9  |-  ( ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  +  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) )  =  ( (
-u _i  x.  (
( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S A ) ) ) ^ 2 ) ) )  +  ( -u _i  x.  ( _i  x.  ( ( ( N `
 ( B G ( _i S A ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
12774, 126eqtr4i 2381 . . . . . . . 8  |-  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )  =  ( ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) )  +  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) )
12851, 127eqtr4i 2381 . . . . . . 7  |-  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )  =  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
1296, 10, 7, 11, 124ipval2 21395 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
4  x.  ( B P A ) )  =  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
1302, 3, 5, 129mp3an 1277 . . . . . . . 8  |-  ( 4  x.  ( B P A ) )  =  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) )
131130oveq2i 5956 . . . . . . 7  |-  ( -u _i  x.  ( 4  x.  ( B P A ) ) )  =  ( -u _i  x.  ( ( ( ( N `  ( B G A ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) )
132128, 131eqtr4i 2381 . . . . . 6  |-  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `
 ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( B G ( _i S ( _i S A ) ) ) ) ^
2 )  -  (
( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )  =  ( -u _i  x.  ( 4  x.  ( B P A ) ) )
13320, 132eqtr4i 2381 . . . . 5  |-  ( 4  x.  ( -u _i  x.  ( B P A ) ) )  =  ( ( ( ( N `  ( B G ( _i S A ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u
1 S ( _i S A ) ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( B G ( _i S
( _i S A ) ) ) ) ^ 2 )  -  ( ( N `  ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) )
13414, 133eqtr4i 2381 . . . 4  |-  ( 4  x.  ( B P ( _i S A ) ) )  =  ( 4  x.  ( -u _i  x.  ( B P A ) ) )
1356, 12dipcl 21402 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( B P ( _i S A ) )  e.  CC )
1362, 3, 9, 135mp3an 1277 . . . . 5  |-  ( B P ( _i S A ) )  e.  CC
13717, 19mulcli 8932 . . . . 5  |-  ( -u _i  x.  ( B P A ) )  e.  CC
138 4pos 9922 . . . . . 6  |-  0  <  4
13915, 138gt0ne0ii 9399 . . . . 5  |-  4  =/=  0
140136, 137, 16, 139mulcani 9497 . . . 4  |-  ( ( 4  x.  ( B P ( _i S A ) ) )  =  ( 4  x.  ( -u _i  x.  ( B P A ) ) )  <->  ( B P ( _i S A ) )  =  ( -u _i  x.  ( B P A ) ) )
141134, 140mpbi 199 . . 3  |-  ( B P ( _i S A ) )  =  ( -u _i  x.  ( B P A ) )
142141fveq2i 5611 . 2  |-  ( * `
 ( B P ( _i S A ) ) )  =  ( * `  ( -u _i  x.  ( B P A ) ) )
1436, 12dipcj 21404 . . 3  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  (
_i S A )  e.  X )  -> 
( * `  ( B P ( _i S A ) ) )  =  ( ( _i S A ) P B ) )
1442, 3, 9, 143mp3an 1277 . 2  |-  ( * `
 ( B P ( _i S A ) ) )  =  ( ( _i S A ) P B )
14517, 19cjmuli 11770 . . 3  |-  ( * `
 ( -u _i  x.  ( B P A ) ) )  =  ( ( * `  -u _i )  x.  (
* `  ( B P A ) ) )
14626, 4cjmuli 11770 . . . . 5  |-  ( * `
 ( -u 1  x.  _i ) )  =  ( ( * `  -u 1 )  x.  (
* `  _i )
)
147107fveq2i 5611 . . . . 5  |-  ( * `
 ( -u 1  x.  _i ) )  =  ( * `  -u _i )
148 1re 8927 . . . . . . . . 9  |-  1  e.  RR
149148renegcli 9198 . . . . . . . 8  |-  -u 1  e.  RR
15026cjrebi 11755 . . . . . . . 8  |-  ( -u
1  e.  RR  <->  ( * `  -u 1 )  = 
-u 1 )
151149, 150mpbi 199 . . . . . . 7  |-  ( * `
 -u 1 )  = 
-u 1
152 cji 11740 . . . . . . 7  |-  ( * `
 _i )  = 
-u _i
153151, 152oveq12i 5957 . . . . . 6  |-  ( ( * `  -u 1
)  x.  ( * `
 _i ) )  =  ( -u 1  x.  -u _i )
15486, 4mul2negi 9317 . . . . . 6  |-  ( -u
1  x.  -u _i )  =  ( 1  x.  _i )
1554mulid2i 8930 . . . . . 6  |-  ( 1  x.  _i )  =  _i
156153, 154, 1553eqtri 2382 . . . . 5  |-  ( ( * `  -u 1
)  x.  ( * `
 _i ) )  =  _i
157146, 147, 1563eqtr3i 2386 . . . 4  |-  ( * `
 -u _i )  =  _i
1586, 12dipcj 21404 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
* `  ( B P A ) )  =  ( A P B ) )
1592, 3, 5, 158mp3an 1277 . . . 4  |-  ( * `
 ( B P A ) )  =  ( A P B )
160157, 159oveq12i 5957 . . 3  |-  ( ( * `  -u _i )  x.  ( * `  ( B P A ) ) )  =  ( _i  x.  ( A P B ) )
161145, 160eqtri 2378 . 2  |-  ( * `
 ( -u _i  x.  ( B P A ) ) )  =  ( _i  x.  ( A P B ) )
162142, 144, 1613eqtr3i 2386 1  |-  ( ( _i S A ) P B )  =  ( _i  x.  ( A P B ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 934    = wceq 1642    e. wcel 1710   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   1c1 8828   _ici 8829    + caddc 8830    x. cmul 8832    - cmin 9127   -ucneg 9128   2c2 9885   4c4 9887   ^cexp 11197   *ccj 11677   NrmCVeccnv 21254   +vcpv 21255   BaseSetcba 21256   .s
OLDcns 21257   normCVcnmcv 21260   .i OLDcdip 21387   CPreHil OLDccphlo 21504
This theorem is referenced by:  ipasslem11  21532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-n0 10058  df-z 10117  df-uz 10323  df-rp 10447  df-fz 10875  df-fzo 10963  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256  df-grpo 20970  df-gid 20971  df-ginv 20972  df-ablo 21061  df-vc 21216  df-nv 21262  df-va 21265  df-ba 21266  df-sm 21267  df-0v 21268  df-nmcv 21270  df-dip 21388  df-ph 21505
  Copyright terms: Public domain W3C validator