MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipassr Structured version   Unicode version

Theorem ipassr 16869
Description: "Associative" law for second argument of inner product (compare ipass 16868). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f  |-  F  =  (Scalar `  W )
phllmhm.h  |-  .,  =  ( .i `  W )
phllmhm.v  |-  V  =  ( Base `  W
)
ipdir.f  |-  K  =  ( Base `  F
)
ipass.s  |-  .x.  =  ( .s `  W )
ipass.p  |-  .X.  =  ( .r `  F )
ipassr.i  |-  .*  =  ( * r `  F )
Assertion
Ref Expression
ipassr  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( A  .,  ( C  .x.  B
) )  =  ( ( A  .,  B
)  .X.  (  .*  `  C ) ) )

Proof of Theorem ipassr
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  W  e.  PreHil )
2 simpr3 965 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  C  e.  K )
3 simpr2 964 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  B  e.  V )
4 simpr1 963 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  A  e.  V )
5 phlsrng.f . . . . . 6  |-  F  =  (Scalar `  W )
6 phllmhm.h . . . . . 6  |-  .,  =  ( .i `  W )
7 phllmhm.v . . . . . 6  |-  V  =  ( Base `  W
)
8 ipdir.f . . . . . 6  |-  K  =  ( Base `  F
)
9 ipass.s . . . . . 6  |-  .x.  =  ( .s `  W )
10 ipass.p . . . . . 6  |-  .X.  =  ( .r `  F )
115, 6, 7, 8, 9, 10ipass 16868 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( C  e.  K  /\  B  e.  V  /\  A  e.  V )
)  ->  ( ( C  .x.  B )  .,  A )  =  ( C  .X.  ( B  .,  A ) ) )
121, 2, 3, 4, 11syl13anc 1186 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( ( C  .x.  B )  .,  A )  =  ( C  .X.  ( B  .,  A ) ) )
1312fveq2d 5724 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  (  .*  `  ( ( C  .x.  B )  .,  A
) )  =  (  .*  `  ( C 
.X.  ( B  .,  A ) ) ) )
14 phllmod 16853 . . . . . 6  |-  ( W  e.  PreHil  ->  W  e.  LMod )
1514adantr 452 . . . . 5  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  W  e.  LMod )
167, 5, 9, 8lmodvscl 15959 . . . . 5  |-  ( ( W  e.  LMod  /\  C  e.  K  /\  B  e.  V )  ->  ( C  .x.  B )  e.  V )
1715, 2, 3, 16syl3anc 1184 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( C  .x.  B )  e.  V
)
18 ipassr.i . . . . 5  |-  .*  =  ( * r `  F )
195, 6, 7, 18ipcj 16857 . . . 4  |-  ( ( W  e.  PreHil  /\  ( C  .x.  B )  e.  V  /\  A  e.  V )  ->  (  .*  `  ( ( C 
.x.  B )  .,  A ) )  =  ( A  .,  ( C  .x.  B ) ) )
201, 17, 4, 19syl3anc 1184 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  (  .*  `  ( ( C  .x.  B )  .,  A
) )  =  ( A  .,  ( C 
.x.  B ) ) )
215phlsrng 16854 . . . . 5  |-  ( W  e.  PreHil  ->  F  e.  *Ring )
2221adantr 452 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  F  e.  *Ring
)
235, 6, 7, 8ipcl 16856 . . . . 5  |-  ( ( W  e.  PreHil  /\  B  e.  V  /\  A  e.  V )  ->  ( B  .,  A )  e.  K )
241, 3, 4, 23syl3anc 1184 . . . 4  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( B  .,  A )  e.  K
)
2518, 8, 10srngmul 15938 . . . 4  |-  ( ( F  e.  *Ring  /\  C  e.  K  /\  ( B  .,  A )  e.  K )  ->  (  .*  `  ( C  .X.  ( B  .,  A ) ) )  =  ( (  .*  `  ( B  .,  A ) ) 
.X.  (  .*  `  C ) ) )
2622, 2, 24, 25syl3anc 1184 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  (  .*  `  ( C  .X.  ( B  .,  A ) ) )  =  ( (  .*  `  ( B 
.,  A ) ) 
.X.  (  .*  `  C ) ) )
2713, 20, 263eqtr3d 2475 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( A  .,  ( C  .x.  B
) )  =  ( (  .*  `  ( B  .,  A ) ) 
.X.  (  .*  `  C ) ) )
285, 6, 7, 18ipcj 16857 . . . 4  |-  ( ( W  e.  PreHil  /\  B  e.  V  /\  A  e.  V )  ->  (  .*  `  ( B  .,  A ) )  =  ( A  .,  B
) )
291, 3, 4, 28syl3anc 1184 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  (  .*  `  ( B  .,  A
) )  =  ( A  .,  B ) )
3029oveq1d 6088 . 2  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( (  .*  `  ( B  .,  A ) )  .X.  (  .*  `  C ) )  =  ( ( A  .,  B ) 
.X.  (  .*  `  C ) ) )
3127, 30eqtrd 2467 1  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  K )
)  ->  ( A  .,  ( C  .x.  B
) )  =  ( ( A  .,  B
)  .X.  (  .*  `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   .rcmulr 13522   * rcstv 13523  Scalarcsca 13524   .scvsca 13525   .icip 13526   *Ringcsr 15924   LModclmod 15942   PreHilcphl 16847
This theorem is referenced by:  ipassr2  16870  cphassr  19166  tchcphlem2  19185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-0g 13719  df-mnd 14682  df-mhm 14730  df-ghm 14996  df-mgp 15641  df-rng 15655  df-ur 15657  df-oppr 15720  df-rnghom 15811  df-staf 15925  df-srng 15926  df-lmod 15944  df-lmhm 16090  df-lvec 16167  df-sra 16236  df-rgmod 16237  df-phl 16849
  Copyright terms: Public domain W3C validator