MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipblnfi Unicode version

Theorem ipblnfi 21434
Description: A function  F generated by varying the first argument of an inner product (with its second argument a fixed vector  A) is a bounded linear functional, i.e. a bounded linear operator from the vector space to  CC. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipblnfi.1  |-  X  =  ( BaseSet `  U )
ipblnfi.7  |-  P  =  ( .i OLD `  U
)
ipblnfi.9  |-  U  e.  CPreHil
OLD
ipblnfi.c  |-  C  = 
<. <.  +  ,  x.  >. ,  abs >.
ipblnfi.l  |-  B  =  ( U  BLnOp  C )
ipblnfi.f  |-  F  =  ( x  e.  X  |->  ( x P A ) )
Assertion
Ref Expression
ipblnfi  |-  ( A  e.  X  ->  F  e.  B )
Distinct variable groups:    x, A    x, U    x, X    x, P
Allowed substitution hints:    B( x)    C( x)    F( x)

Proof of Theorem ipblnfi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipblnfi.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
21phnvi 21394 . . . . . 6  |-  U  e.  NrmCVec
3 ipblnfi.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
4 ipblnfi.7 . . . . . . 7  |-  P  =  ( .i OLD `  U
)
53, 4dipcl 21288 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  A  e.  X )  ->  (
x P A )  e.  CC )
62, 5mp3an1 1264 . . . . 5  |-  ( ( x  e.  X  /\  A  e.  X )  ->  ( x P A )  e.  CC )
76ancoms 439 . . . 4  |-  ( ( A  e.  X  /\  x  e.  X )  ->  ( x P A )  e.  CC )
8 ipblnfi.f . . . 4  |-  F  =  ( x  e.  X  |->  ( x P A ) )
97, 8fmptd 5684 . . 3  |-  ( A  e.  X  ->  F : X --> CC )
10 eqid 2283 . . . . . . . . . . 11  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
113, 10nvscl 21184 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  y  e.  CC  /\  z  e.  X )  ->  (
y ( .s OLD `  U ) z )  e.  X )
122, 11mp3an1 1264 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  z  e.  X )  ->  ( y ( .s
OLD `  U )
z )  e.  X
)
1312ad2ant2lr 728 . . . . . . . 8  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( y ( .s
OLD `  U )
z )  e.  X
)
14 simprr 733 . . . . . . . 8  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  ->  w  e.  X )
15 simpll 730 . . . . . . . 8  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  ->  A  e.  X )
16 eqid 2283 . . . . . . . . . 10  |-  ( +v
`  U )  =  ( +v `  U
)
173, 16, 4dipdir 21420 . . . . . . . . 9  |-  ( ( U  e.  CPreHil OLD  /\  ( ( y ( .s OLD `  U
) z )  e.  X  /\  w  e.  X  /\  A  e.  X ) )  -> 
( ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) P A )  =  ( ( ( y ( .s
OLD `  U )
z ) P A )  +  ( w P A ) ) )
181, 17mpan 651 . . . . . . . 8  |-  ( ( ( y ( .s
OLD `  U )
z )  e.  X  /\  w  e.  X  /\  A  e.  X
)  ->  ( (
( y ( .s
OLD `  U )
z ) ( +v
`  U ) w ) P A )  =  ( ( ( y ( .s OLD `  U ) z ) P A )  +  ( w P A ) ) )
1913, 14, 15, 18syl3anc 1182 . . . . . . 7  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) P A )  =  ( ( ( y ( .s
OLD `  U )
z ) P A )  +  ( w P A ) ) )
20 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
y  e.  CC )
21 simprl 732 . . . . . . . . 9  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
z  e.  X )
223, 16, 10, 4, 1ipassi 21419 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  z  e.  X  /\  A  e.  X )  ->  ( ( y ( .s OLD `  U
) z ) P A )  =  ( y  x.  ( z P A ) ) )
2320, 21, 15, 22syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( y ( .s OLD `  U
) z ) P A )  =  ( y  x.  ( z P A ) ) )
2423oveq1d 5873 . . . . . . 7  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( ( y ( .s OLD `  U
) z ) P A )  +  ( w P A ) )  =  ( ( y  x.  ( z P A ) )  +  ( w P A ) ) )
2519, 24eqtrd 2315 . . . . . 6  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) P A )  =  ( ( y  x.  ( z P A ) )  +  ( w P A ) ) )
2612adantll 694 . . . . . . . . 9  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  z  e.  X
)  ->  ( y
( .s OLD `  U
) z )  e.  X )
273, 16nvgcl 21176 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
y ( .s OLD `  U ) z )  e.  X  /\  w  e.  X )  ->  (
( y ( .s
OLD `  U )
z ) ( +v
`  U ) w )  e.  X )
282, 27mp3an1 1264 . . . . . . . . 9  |-  ( ( ( y ( .s
OLD `  U )
z )  e.  X  /\  w  e.  X
)  ->  ( (
y ( .s OLD `  U ) z ) ( +v `  U
) w )  e.  X )
2926, 28sylan 457 . . . . . . . 8  |-  ( ( ( ( A  e.  X  /\  y  e.  CC )  /\  z  e.  X )  /\  w  e.  X )  ->  (
( y ( .s
OLD `  U )
z ) ( +v
`  U ) w )  e.  X )
3029anasss 628 . . . . . . 7  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( y ( .s OLD `  U
) z ) ( +v `  U ) w )  e.  X
)
31 oveq1 5865 . . . . . . . 8  |-  ( x  =  ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w )  ->  (
x P A )  =  ( ( ( y ( .s OLD `  U ) z ) ( +v `  U
) w ) P A ) )
32 ovex 5883 . . . . . . . 8  |-  ( ( ( y ( .s
OLD `  U )
z ) ( +v
`  U ) w ) P A )  e.  _V
3331, 8, 32fvmpt 5602 . . . . . . 7  |-  ( ( ( y ( .s
OLD `  U )
z ) ( +v
`  U ) w )  e.  X  -> 
( F `  (
( y ( .s
OLD `  U )
z ) ( +v
`  U ) w ) )  =  ( ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) P A ) )
3430, 33syl 15 . . . . . 6  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  (
( y ( .s
OLD `  U )
z ) ( +v
`  U ) w ) )  =  ( ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) P A ) )
35 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x P A )  =  ( z P A ) )
36 ovex 5883 . . . . . . . . . 10  |-  ( z P A )  e. 
_V
3735, 8, 36fvmpt 5602 . . . . . . . . 9  |-  ( z  e.  X  ->  ( F `  z )  =  ( z P A ) )
3837ad2antrl 708 . . . . . . . 8  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  z
)  =  ( z P A ) )
3938oveq2d 5874 . . . . . . 7  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( y  x.  ( F `  z )
)  =  ( y  x.  ( z P A ) ) )
40 oveq1 5865 . . . . . . . . 9  |-  ( x  =  w  ->  (
x P A )  =  ( w P A ) )
41 ovex 5883 . . . . . . . . 9  |-  ( w P A )  e. 
_V
4240, 8, 41fvmpt 5602 . . . . . . . 8  |-  ( w  e.  X  ->  ( F `  w )  =  ( w P A ) )
4342ad2antll 709 . . . . . . 7  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  w
)  =  ( w P A ) )
4439, 43oveq12d 5876 . . . . . 6  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( y  x.  ( F `  z
) )  +  ( F `  w ) )  =  ( ( y  x.  ( z P A ) )  +  ( w P A ) ) )
4525, 34, 443eqtr4d 2325 . . . . 5  |-  ( ( ( A  e.  X  /\  y  e.  CC )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  (
( y ( .s
OLD `  U )
z ) ( +v
`  U ) w ) )  =  ( ( y  x.  ( F `  z )
)  +  ( F `
 w ) ) )
4645ralrimivva 2635 . . . 4  |-  ( ( A  e.  X  /\  y  e.  CC )  ->  A. z  e.  X  A. w  e.  X  ( F `  ( ( y ( .s OLD `  U ) z ) ( +v `  U
) w ) )  =  ( ( y  x.  ( F `  z ) )  +  ( F `  w
) ) )
4746ralrimiva 2626 . . 3  |-  ( A  e.  X  ->  A. y  e.  CC  A. z  e.  X  A. w  e.  X  ( F `  ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) )  =  ( ( y  x.  ( F `  z
) )  +  ( F `  w ) ) )
48 ipblnfi.c . . . . 5  |-  C  = 
<. <.  +  ,  x.  >. ,  abs >.
4948cnnv 21245 . . . 4  |-  C  e.  NrmCVec
5048cnnvba 21247 . . . . 5  |-  CC  =  ( BaseSet `  C )
5148cnnvg 21246 . . . . 5  |-  +  =  ( +v `  C )
5248cnnvs 21249 . . . . 5  |-  x.  =  ( .s OLD `  C
)
53 eqid 2283 . . . . 5  |-  ( U 
LnOp  C )  =  ( U  LnOp  C )
543, 50, 16, 51, 10, 52, 53islno 21331 . . . 4  |-  ( ( U  e.  NrmCVec  /\  C  e.  NrmCVec )  ->  ( F  e.  ( U  LnOp  C )  <->  ( F : X --> CC  /\  A. y  e.  CC  A. z  e.  X  A. w  e.  X  ( F `  ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) )  =  ( ( y  x.  ( F `  z
) )  +  ( F `  w ) ) ) ) )
552, 49, 54mp2an 653 . . 3  |-  ( F  e.  ( U  LnOp  C )  <->  ( F : X
--> CC  /\  A. y  e.  CC  A. z  e.  X  A. w  e.  X  ( F `  ( ( y ( .s OLD `  U
) z ) ( +v `  U ) w ) )  =  ( ( y  x.  ( F `  z
) )  +  ( F `  w ) ) ) )
569, 47, 55sylanbrc 645 . 2  |-  ( A  e.  X  ->  F  e.  ( U  LnOp  C
) )
57 eqid 2283 . . . 4  |-  ( normCV `  U )  =  (
normCV
`  U )
583, 57nvcl 21225 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( normCV `  U ) `  A )  e.  RR )
592, 58mpan 651 . 2  |-  ( A  e.  X  ->  (
( normCV `  U ) `  A )  e.  RR )
603, 57, 4, 1sii 21432 . . . . 5  |-  ( ( z  e.  X  /\  A  e.  X )  ->  ( abs `  (
z P A ) )  <_  ( (
( normCV `  U ) `  z )  x.  (
( normCV `  U ) `  A ) ) )
6160ancoms 439 . . . 4  |-  ( ( A  e.  X  /\  z  e.  X )  ->  ( abs `  (
z P A ) )  <_  ( (
( normCV `  U ) `  z )  x.  (
( normCV `  U ) `  A ) ) )
6237adantl 452 . . . . 5  |-  ( ( A  e.  X  /\  z  e.  X )  ->  ( F `  z
)  =  ( z P A ) )
6362fveq2d 5529 . . . 4  |-  ( ( A  e.  X  /\  z  e.  X )  ->  ( abs `  ( F `  z )
)  =  ( abs `  ( z P A ) ) )
6459recnd 8861 . . . . 5  |-  ( A  e.  X  ->  (
( normCV `  U ) `  A )  e.  CC )
653, 57nvcl 21225 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  z  e.  X )  ->  (
( normCV `  U ) `  z )  e.  RR )
662, 65mpan 651 . . . . . 6  |-  ( z  e.  X  ->  (
( normCV `  U ) `  z )  e.  RR )
6766recnd 8861 . . . . 5  |-  ( z  e.  X  ->  (
( normCV `  U ) `  z )  e.  CC )
68 mulcom 8823 . . . . 5  |-  ( ( ( ( normCV `  U
) `  A )  e.  CC  /\  ( (
normCV
`  U ) `  z )  e.  CC )  ->  ( ( (
normCV
`  U ) `  A )  x.  (
( normCV `  U ) `  z ) )  =  ( ( ( normCV `  U ) `  z
)  x.  ( (
normCV
`  U ) `  A ) ) )
6964, 67, 68syl2an 463 . . . 4  |-  ( ( A  e.  X  /\  z  e.  X )  ->  ( ( ( normCV `  U ) `  A
)  x.  ( (
normCV
`  U ) `  z ) )  =  ( ( ( normCV `  U ) `  z
)  x.  ( (
normCV
`  U ) `  A ) ) )
7061, 63, 693brtr4d 4053 . . 3  |-  ( ( A  e.  X  /\  z  e.  X )  ->  ( abs `  ( F `  z )
)  <_  ( (
( normCV `  U ) `  A )  x.  (
( normCV `  U ) `  z ) ) )
7170ralrimiva 2626 . 2  |-  ( A  e.  X  ->  A. z  e.  X  ( abs `  ( F `  z
) )  <_  (
( ( normCV `  U
) `  A )  x.  ( ( normCV `  U
) `  z )
) )
7248cnnvnm 21250 . . 3  |-  abs  =  ( normCV `  C )
73 ipblnfi.l . . 3  |-  B  =  ( U  BLnOp  C )
743, 57, 72, 53, 73, 2, 49blo3i 21380 . 2  |-  ( ( F  e.  ( U 
LnOp  C )  /\  (
( normCV `  U ) `  A )  e.  RR  /\ 
A. z  e.  X  ( abs `  ( F `
 z ) )  <_  ( ( (
normCV
`  U ) `  A )  x.  (
( normCV `  U ) `  z ) ) )  ->  F  e.  B
)
7556, 59, 71, 74syl3anc 1182 1  |-  ( A  e.  X  ->  F  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643   class class class wbr 4023    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736    + caddc 8740    x. cmul 8742    <_ cle 8868   abscabs 11719   NrmCVeccnv 21140   +vcpv 21141   BaseSetcba 21142   .s
OLDcns 21143   normCVcnmcv 21146   .i OLDcdip 21273    LnOp clno 21318    BLnOp cblo 21320   CPreHil OLDccphlo 21390
This theorem is referenced by:  htthlem  21497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-cn 16957  df-cnp 16958  df-t1 17042  df-haus 17043  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-lno 21322  df-nmoo 21323  df-blo 21324  df-0o 21325  df-ph 21391
  Copyright terms: Public domain W3C validator