MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipobas Structured version   Unicode version

Theorem ipobas 14573
Description: Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by Mario Carneiro, 25-Oct-2015.)
Hypothesis
Ref Expression
ipoval.i  |-  I  =  (toInc `  F )
Assertion
Ref Expression
ipobas  |-  ( F  e.  V  ->  F  =  ( Base `  I
) )

Proof of Theorem ipobas
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipostr 14571 . . 3  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) Struct  <. 1 , ; 1 1 >.
2 baseid 13503 . . 3  |-  Base  = Slot  ( Base `  ndx )
3 snsspr1 3939 . . . 4  |-  { <. (
Base `  ndx ) ,  F >. }  C_  { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }
4 ssun1 3502 . . . 4  |-  { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
53, 4sstri 3349 . . 3  |-  { <. (
Base `  ndx ) ,  F >. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
61, 2, 5strfv 13493 . 2  |-  ( F  e.  V  ->  F  =  ( Base `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
7 ipoval.i . . . 4  |-  I  =  (toInc `  F )
8 eqid 2435 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
97, 8ipoval 14572 . . 3  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) )
109fveq2d 5724 . 2  |-  ( F  e.  V  ->  ( Base `  I )  =  ( Base `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
116, 10eqtr4d 2470 1  |-  ( F  e.  V  ->  F  =  ( Base `  I
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   {cpr 3807   <.cop 3809   U.cuni 4007   {copab 4257    e. cmpt 4258   ` cfv 5446   1c1 8983  ;cdc 10374   ndxcnx 13458   Basecbs 13461  TopSetcts 13527   lecple 13528   occoc 13529  ordTopcordt 13713  toInccipo 14569
This theorem is referenced by:  ipopos  14578  isipodrs  14579  ipodrsfi  14581  mrelatglb  14602  mrelatglb0  14603  mrelatlub  14604  mreclat  14605  thlbas  16915
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-tset 13540  df-ple 13541  df-ocomp 13542  df-ipo 14570
  Copyright terms: Public domain W3C validator