MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipolerval Structured version   Unicode version

Theorem ipolerval 14572
Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipoval.i  |-  I  =  (toInc `  F )
Assertion
Ref Expression
ipolerval  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  I ) )
Distinct variable groups:    x, y, F    x, I, y    x, V, y

Proof of Theorem ipolerval
StepHypRef Expression
1 simpl 444 . . . . . . 7  |-  ( ( { x ,  y }  C_  F  /\  x  C_  y )  ->  { x ,  y }  C_  F )
2 vex 2951 . . . . . . . 8  |-  x  e. 
_V
3 vex 2951 . . . . . . . 8  |-  y  e. 
_V
42, 3prss 3944 . . . . . . 7  |-  ( ( x  e.  F  /\  y  e.  F )  <->  { x ,  y } 
C_  F )
51, 4sylibr 204 . . . . . 6  |-  ( ( { x ,  y }  C_  F  /\  x  C_  y )  -> 
( x  e.  F  /\  y  e.  F
) )
65ssopab2i 4474 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } 
C_  { <. x ,  y >.  |  ( x  e.  F  /\  y  e.  F ) }
7 df-xp 4876 . . . . 5  |-  ( F  X.  F )  =  { <. x ,  y
>.  |  ( x  e.  F  /\  y  e.  F ) }
86, 7sseqtr4i 3373 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } 
C_  ( F  X.  F )
9 xpexg 4981 . . . . 5  |-  ( ( F  e.  V  /\  F  e.  V )  ->  ( F  X.  F
)  e.  _V )
109anidms 627 . . . 4  |-  ( F  e.  V  ->  ( F  X.  F )  e. 
_V )
11 ssexg 4341 . . . 4  |-  ( ( { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) }  C_  ( F  X.  F
)  /\  ( F  X.  F )  e.  _V )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  e.  _V )
128, 10, 11sylancr 645 . . 3  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  e.  _V )
13 ipostr 14569 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) Struct  <. 1 , ; 1 1 >.
14 pleid 13612 . . . 4  |-  le  = Slot  ( le `  ndx )
15 snsspr1 3939 . . . . 5  |-  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. } 
C_  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. }
16 ssun2 3503 . . . . 5  |-  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
1715, 16sstri 3349 . . . 4  |-  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. } 
C_  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } )
1813, 14, 17strfv 13491 . . 3  |-  ( {
<. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y
) }  e.  _V  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) }  =  ( le `  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
1912, 18syl 16 . 2  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
20 ipoval.i . . . 4  |-  I  =  (toInc `  F )
21 eqid 2435 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
2220, 21ipoval 14570 . . 3  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) )
2322fveq2d 5724 . 2  |-  ( F  e.  V  ->  ( le `  I )  =  ( le `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
2419, 23eqtr4d 2470 1  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   {cpr 3807   <.cop 3809   U.cuni 4007   {copab 4257    e. cmpt 4258    X. cxp 4868   ` cfv 5446   1c1 8981  ;cdc 10372   ndxcnx 13456   Basecbs 13459  TopSetcts 13525   lecple 13526   occoc 13527  ordTopcordt 13711  toInccipo 14567
This theorem is referenced by:  ipotset  14573  ipole  14574  thlle  16914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-fz 11034  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-tset 13538  df-ple 13539  df-ocomp 13540  df-ipo 14568
  Copyright terms: Public domain W3C validator