MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipotset Unicode version

Theorem ipotset 14542
Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.)
Hypotheses
Ref Expression
ipoval.i  |-  I  =  (toInc `  F )
ipole.l  |-  .<_  =  ( le `  I )
Assertion
Ref Expression
ipotset  |-  ( F  e.  V  ->  (ordTop ` 
.<_  )  =  (TopSet `  I ) )

Proof of Theorem ipotset
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5705 . . 3  |-  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  e.  _V
2 ipostr 14538 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) Struct  <. 1 , ; 1 1 >.
3 tsetid 13574 . . . 4  |- TopSet  = Slot  (TopSet ` 
ndx )
4 snsspr2 3912 . . . . 5  |-  { <. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  { <. ( Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }
5 ssun1 3474 . . . . 5  |-  { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
64, 5sstri 3321 . . . 4  |-  { <. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
72, 3, 6strfv 13460 . . 3  |-  ( (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  e.  _V  ->  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
81, 7ax-mp 8 . 2  |-  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
9 ipoval.i . . . . 5  |-  I  =  (toInc `  F )
109ipolerval 14541 . . . 4  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  I ) )
11 ipole.l . . . 4  |-  .<_  =  ( le `  I )
1210, 11syl6reqr 2459 . . 3  |-  ( F  e.  V  ->  .<_  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
1312fveq2d 5695 . 2  |-  ( F  e.  V  ->  (ordTop ` 
.<_  )  =  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } ) )
14 eqid 2408 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
159, 14ipoval 14539 . . 3  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) )
1615fveq2d 5695 . 2  |-  ( F  e.  V  ->  (TopSet `  I )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) ) )
178, 13, 163eqtr4a 2466 1  |-  ( F  e.  V  ->  (ordTop ` 
.<_  )  =  (TopSet `  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   {crab 2674   _Vcvv 2920    u. cun 3282    i^i cin 3283    C_ wss 3284   (/)c0 3592   {csn 3778   {cpr 3779   <.cop 3781   U.cuni 3979   {copab 4229    e. cmpt 4230   ` cfv 5417   1c1 8951  ;cdc 10342   ndxcnx 13425   Basecbs 13428  TopSetcts 13494   lecple 13495   occoc 13496  ordTopcordt 13680  toInccipo 14536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-fz 11004  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-tset 13507  df-ple 13508  df-ocomp 13509  df-ipo 14537
  Copyright terms: Public domain W3C validator