MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipotset Unicode version

Theorem ipotset 14260
Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.)
Hypotheses
Ref Expression
ipoval.i  |-  I  =  (toInc `  F )
ipole.l  |-  .<_  =  ( le `  I )
Assertion
Ref Expression
ipotset  |-  ( F  e.  V  ->  (ordTop ` 
.<_  )  =  (TopSet `  I ) )

Proof of Theorem ipotset
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5539 . . 3  |-  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  e.  _V
2 ipostr 14256 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) Struct  <. 1 , ; 1 1 >.
3 tsetid 13294 . . . 4  |- TopSet  = Slot  (TopSet ` 
ndx )
4 snsspr2 3765 . . . . 5  |-  { <. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  { <. ( Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }
5 ssun1 3338 . . . . 5  |-  { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
64, 5sstri 3188 . . . 4  |-  { <. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  C_  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } )
72, 3, 6strfv 13180 . . 3  |-  ( (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  e.  _V  ->  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) ) )
81, 7ax-mp 8 . 2  |-  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  F >. , 
<. (TopSet `  ndx ) ,  (ordTop `  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) } ) >. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
>. ,  <. ( oc
`  ndx ) ,  ( x  e.  F  |->  U. { y  e.  F  |  ( y  i^i  x )  =  (/) } ) >. } ) )
9 ipoval.i . . . . 5  |-  I  =  (toInc `  F )
109ipolerval 14259 . . . 4  |-  ( F  e.  V  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  ( le `  I ) )
11 ipole.l . . . 4  |-  .<_  =  ( le `  I )
1210, 11syl6reqr 2334 . . 3  |-  ( F  e.  V  ->  .<_  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
1312fveq2d 5529 . 2  |-  ( F  e.  V  ->  (ordTop ` 
.<_  )  =  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } ) )
14 eqid 2283 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  F  /\  x  C_  y ) }
159, 14ipoval 14257 . . 3  |-  ( F  e.  V  ->  I  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) )
1615fveq2d 5529 . 2  |-  ( F  e.  V  ->  (TopSet `  I )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  F >. ,  <. (TopSet ` 
ndx ) ,  (ordTop `  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } )
>. }  u.  { <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  F  /\  x  C_  y ) } >. , 
<. ( oc `  ndx ) ,  ( x  e.  F  |->  U. {
y  e.  F  | 
( y  i^i  x
)  =  (/) } )
>. } ) ) )
178, 13, 163eqtr4a 2341 1  |-  ( F  e.  V  ->  (ordTop ` 
.<_  )  =  (TopSet `  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   <.cop 3643   U.cuni 3827   {copab 4076    e. cmpt 4077   ` cfv 5255   1c1 8738  ;cdc 10124   ndxcnx 13145   Basecbs 13148  TopSetcts 13214   lecple 13215   occoc 13216  ordTopcordt 13398  toInccipo 14254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-tset 13227  df-ple 13228  df-ocomp 13229  df-ipo 14255
  Copyright terms: Public domain W3C validator