Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Unicode version

Theorem irrapxlem2 26888
Description: Lemma for irrapx1 26893. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) )  <  (
1  /  B ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 26887 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
2 nnre 10009 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  B  e.  RR )
32ad3antlr 713 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  e.  RR )
4 rpre 10620 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR+  ->  A  e.  RR )
54ad3antrrr 712 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  A  e.  RR )
6 elfzelz 11061 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 0 ... B )  ->  x  e.  ZZ )
76zred 10377 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0 ... B )  ->  x  e.  RR )
87ad2antlr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  x  e.  RR )
95, 8remulcld 9118 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( A  x.  x )  e.  RR )
10 1rp 10618 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
1110a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  1  e.  RR+ )
129, 11modcld 11256 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  x
)  mod  1 )  e.  RR )
133, 12remulcld 9118 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  x )  mod  1 ) )  e.  RR )
14 intfrac 11265 . . . . . . . . . . . 12  |-  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  e.  RR  ->  ( B  x.  ( ( A  x.  x )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) ) )
1513, 14syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  x )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) ) )
16 elfzelz 11061 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... B )  ->  y  e.  ZZ )
1716zred 10377 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 0 ... B )  ->  y  e.  RR )
1817adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  y  e.  RR )
195, 18remulcld 9118 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( A  x.  y )  e.  RR )
2019, 11modcld 11256 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  y
)  mod  1 )  e.  RR )
213, 20remulcld 9118 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  y )  mod  1 ) )  e.  RR )
22 intfrac 11265 . . . . . . . . . . . 12  |-  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  e.  RR  ->  ( B  x.  ( ( A  x.  y )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) )
2321, 22syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( ( A  x.  y )  mod  1 ) )  =  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) )
2415, 23oveq12d 6101 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  =  ( ( ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) ) )
2524fveq2d 5734 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  -  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( abs `  (
( ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) ) )
2625adantr 453 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  =  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) ) )
27 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( |_ `  ( B  x.  (
( A  x.  x
)  mod  1 ) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )
2827oveq1d 6098 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  =  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) ) )
2928oveq1d 6098 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( (
( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) )  =  ( ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )
3029fveq2d 5734 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )  =  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) ) )
3121flcld 11209 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  e.  ZZ )
3231zcnd 10378 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  e.  CC )
3313, 11modcld 11256 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 )  e.  RR )
3433recnd 9116 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 )  e.  CC )
3521, 11modcld 11256 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 )  e.  RR )
3635recnd 9116 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 )  e.  CC )
3732, 34, 36pnpcand 9450 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) )  =  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )
3837fveq2d 5734 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) ) )  =  ( abs `  (
( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
)  -  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )
39 0re 9093 . . . . . . . . . . . . . 14  |-  0  e.  RR
4039a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  0  e.  RR )
41 1re 9092 . . . . . . . . . . . . . 14  |-  1  e.  RR
4241a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  1  e.  RR )
43 modelico 26886 . . . . . . . . . . . . . 14  |-  ( ( ( B  x.  (
( A  x.  x
)  mod  1 ) )  e.  RR  /\  1  e.  RR+ )  -> 
( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
)  e.  ( 0 [,) 1 ) )
4413, 10, 43sylancl 645 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1 ) )
45 modelico 26886 . . . . . . . . . . . . . 14  |-  ( ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  e.  RR  /\  1  e.  RR+ )  -> 
( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
)  e.  ( 0 [,) 1 ) )
4621, 10, 45sylancl 645 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1 ) )
47 icodiamlt 26885 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1
)  /\  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 )  e.  ( 0 [,) 1 ) ) )  ->  ( abs `  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )  < 
( 1  -  0 ) )
4840, 42, 44, 46, 47syl22anc 1186 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )  < 
( 1  -  0 ) )
49 ax-1cn 9050 . . . . . . . . . . . . 13  |-  1  e.  CC
5049subid1i 9374 . . . . . . . . . . . 12  |-  ( 1  -  0 )  =  1
5148, 50syl6breq 4253 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 )  -  ( ( B  x.  ( ( A  x.  y )  mod  1
) )  mod  1
) ) )  <  1 )
5238, 51eqbrtrd 4234 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  mod  1 ) )  -  ( ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  +  ( ( B  x.  (
( A  x.  y
)  mod  1 ) )  mod  1 ) ) ) )  <  1 )
5352adantr 453 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  y )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )  <  1 )
5430, 53eqbrtrd 4234 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( ( |_
`  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  +  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  mod  1
) )  -  (
( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) )  +  ( ( B  x.  ( ( A  x.  y )  mod  1 ) )  mod  1 ) ) ) )  <  1 )
5526, 54eqbrtrd 4234 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B
) )  /\  y  e.  ( 0 ... B
) )  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1
) ) )  =  ( |_ `  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  <  1 )
5655ex 425 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  ->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  -  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  <  1 ) )
5712, 20resubcld 9467 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) )  e.  RR )
5857recnd 9116 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) )  e.  CC )
5958abscld 12240 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) )  e.  RR )
60 nngt0 10031 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  0  <  B )
6160ad3antlr 713 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  0  <  B )
6261gt0ne0d 9593 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  =/=  0 )
633, 62rereccld 9843 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
1  /  B )  e.  RR )
64 ltmul2 9863 . . . . . . . 8  |-  ( ( ( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  e.  RR  /\  ( 1  /  B
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) )  < 
( 1  /  B
)  <->  ( B  x.  ( abs `  ( ( ( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) ) )  <  ( B  x.  ( 1  /  B ) ) ) )
6559, 63, 3, 61, 64syl112anc 1189 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( B  x.  ( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) ) )  <  ( B  x.  ( 1  /  B ) ) ) )
66 nnnn0 10230 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  B  e.  NN0 )
6766nn0ge0d 10279 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  0  <_  B )
6867ad3antlr 713 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  0  <_  B )
693, 68absidd 12227 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  B )  =  B )
7069eqcomd 2443 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  =  ( abs `  B
) )
7170oveq1d 6098 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) ) )
723recnd 9116 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  B  e.  CC )
7372, 58absmuld 12258 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( B  x.  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) ) )
7412recnd 9116 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  x
)  mod  1 )  e.  CC )
7520recnd 9116 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( A  x.  y
)  mod  1 )  e.  CC )
7672, 74, 75subdid 9491 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( (
( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) )  =  ( ( B  x.  ( ( A  x.  x )  mod  1 ) )  -  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )
7776fveq2d 5734 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( abs `  ( B  x.  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( abs `  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
7871, 73, 773eqtr2d 2476 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) ) )  =  ( abs `  (
( B  x.  (
( A  x.  x
)  mod  1 ) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) ) )
7972, 62recidd 9787 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
8078, 79breq12d 4227 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( B  x.  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) ) )  <  ( B  x.  ( 1  /  B
) )  <->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  <  1 ) )
8165, 80bitrd 246 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( abs `  ( ( B  x.  ( ( A  x.  x )  mod  1
) )  -  ( B  x.  ( ( A  x.  y )  mod  1 ) ) ) )  <  1 ) )
8256, 81sylibrd 227 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) )  ->  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  ( ( A  x.  y )  mod  1
) ) )  < 
( 1  /  B
) ) )
8382anim2d 550 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  /\  y  e.  ( 0 ... B
) )  ->  (
( x  <  y  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  -> 
( x  <  y  /\  ( abs `  (
( ( A  x.  x )  mod  1
)  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B ) ) ) )
8483reximdva 2820 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  x  e.  ( 0 ... B ) )  ->  ( E. y  e.  ( 0 ... B ) ( x  <  y  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  ->  E. y  e.  (
0 ... B ) ( x  <  y  /\  ( abs `  ( ( ( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B ) ) ) )
8584reximdva 2820 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( E. x  e.  (
0 ... B ) E. y  e.  ( 0 ... B ) ( x  <  y  /\  ( |_ `  ( B  x.  ( ( A  x.  x )  mod  1 ) ) )  =  ( |_ `  ( B  x.  (
( A  x.  y
)  mod  1 ) ) ) )  ->  E. x  e.  (
0 ... B ) E. y  e.  ( 0 ... B ) ( x  <  y  /\  ( abs `  ( ( ( A  x.  x
)  mod  1 )  -  ( ( A  x.  y )  mod  1 ) ) )  <  ( 1  /  B ) ) ) )
861, 85mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 0 ... B
) E. y  e.  ( 0 ... B
) ( x  < 
y  /\  ( abs `  ( ( ( A  x.  x )  mod  1 )  -  (
( A  x.  y
)  mod  1 ) ) )  <  (
1  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    < clt 9122    <_ cle 9123    - cmin 9293    / cdiv 9679   NNcn 10002   RR+crp 10614   [,)cico 10920   ...cfz 11045   |_cfl 11203    mod cmo 11252   abscabs 12041
This theorem is referenced by:  irrapxlem3  26889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-ico 10924  df-fz 11046  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043
  Copyright terms: Public domain W3C validator