Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem3 Unicode version

Theorem irrapxlem3 26580
Description: Lemma for irrapx1 26584. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irrapxlem2 26579 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. a  e.  ( 0 ... B
) E. b  e.  ( 0 ... B
) ( a  < 
b  /\  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) )  <  (
1  /  B ) ) )
2 1m1e0 10002 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
3 elfzelz 10993 . . . . . . . . . . . . 13  |-  ( a  e.  ( 0 ... B )  ->  a  e.  ZZ )
43ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
a  e.  ZZ )
54zred 10309 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
a  e.  RR )
6 elfzelz 10993 . . . . . . . . . . . . 13  |-  ( b  e.  ( 0 ... B )  ->  b  e.  ZZ )
76ad2antll 710 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
b  e.  ZZ )
87zred 10309 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
b  e.  RR )
95, 8posdifd 9547 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
( a  <  b  <->  0  <  ( b  -  a ) ) )
109biimpa 471 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <  ( b  -  a ) )
112, 10syl5eqbr 4188 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( 1  -  1 )  <  ( b  -  a ) )
12 1z 10245 . . . . . . . . 9  |-  1  e.  ZZ
13 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  ( 0 ... B ) )
1413, 6syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  ZZ )
15 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  ( 0 ... B ) )
1615, 3syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  ZZ )
1714, 16zsubcld 10314 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  ZZ )
18 zlem1lt 10261 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  ( b  -  a
)  e.  ZZ )  ->  ( 1  <_ 
( b  -  a
)  <->  ( 1  -  1 )  <  (
b  -  a ) ) )
1912, 17, 18sylancr 645 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( 1  <_  (
b  -  a )  <-> 
( 1  -  1 )  <  ( b  -  a ) ) )
2011, 19mpbird 224 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  <_  ( b  -  a ) )
2114zred 10309 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  RR )
2216zred 10309 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  RR )
2321, 22resubcld 9399 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  RR )
24 0re 9026 . . . . . . . . . 10  |-  0  e.  RR
2524a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  e.  RR )
2621, 25resubcld 9399 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  e.  RR )
27 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  NN )
2827nnred 9949 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  RR )
29 elfzle1 10994 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... B )  ->  0  <_  a )
3015, 29syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <_  a )
3125, 22, 21, 30lesub2dd 9577 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  <_  ( b  -  0 ) )
3221recnd 9049 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  e.  CC )
3332subid1d 9334 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  =  b )
34 elfzle2 10995 . . . . . . . . . 10  |-  ( b  e.  ( 0 ... B )  ->  b  <_  B )
3513, 34syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
b  <_  B )
3633, 35eqbrtrd 4175 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  0 )  <_  B )
3723, 26, 28, 31, 36letrd 9161 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  <_  B )
3812a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  e.  ZZ )
3927nnzd 10308 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  B  e.  ZZ )
40 elfz 10983 . . . . . . . 8  |-  ( ( ( b  -  a
)  e.  ZZ  /\  1  e.  ZZ  /\  B  e.  ZZ )  ->  (
( b  -  a
)  e.  ( 1 ... B )  <->  ( 1  <_  ( b  -  a )  /\  (
b  -  a )  <_  B ) ) )
4117, 38, 39, 40syl3anc 1184 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( b  -  a )  e.  ( 1 ... B )  <-> 
( 1  <_  (
b  -  a )  /\  ( b  -  a )  <_  B
) ) )
4220, 37, 41mpbir2and 889 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( b  -  a
)  e.  ( 1 ... B ) )
4342adantrr 698 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( b  -  a )  e.  ( 1 ... B
) )
44 rpre 10552 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  A  e.  RR )
4544ad3antrrr 711 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  A  e.  RR )
4645, 22remulcld 9051 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  e.  RR )
4745, 21remulcld 9051 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  b
)  e.  RR )
48 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  <  b )
4922, 21, 48ltled 9155 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  <_  b )
50 rpgt0 10557 . . . . . . . . . . 11  |-  ( A  e.  RR+  ->  0  < 
A )
5150ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
0  <  A )
52 lemul2 9797 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( a  <_  b  <->  ( A  x.  a )  <_  ( A  x.  b ) ) )
5322, 21, 45, 51, 52syl112anc 1188 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( a  <_  b  <->  ( A  x.  a )  <_  ( A  x.  b ) ) )
5449, 53mpbid 202 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  <_  ( A  x.  b ) )
55 flword2 11149 . . . . . . . 8  |-  ( ( ( A  x.  a
)  e.  RR  /\  ( A  x.  b
)  e.  RR  /\  ( A  x.  a
)  <_  ( A  x.  b ) )  -> 
( |_ `  ( A  x.  b )
)  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) ) )
5646, 47, 54, 55syl3anc 1184 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) ) )
57 uznn0sub 10451 . . . . . . 7  |-  ( ( |_ `  ( A  x.  b ) )  e.  ( ZZ>= `  ( |_ `  ( A  x.  a ) ) )  ->  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5856, 57syl 16 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
5958adantrr 698 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0 )
6045recnd 9049 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  ->  A  e.  CC )
6122recnd 9049 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
a  e.  CC )
6260, 32, 61subdid 9423 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  (
b  -  a ) )  =  ( ( A  x.  b )  -  ( A  x.  a ) ) )
6362oveq1d 6037 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  -  ( A  x.  a ) )  -  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) ) ) )
6447recnd 9049 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  b
)  e.  CC )
6546recnd 9049 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( A  x.  a
)  e.  CC )
6647flcld 11136 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  ZZ )
6766zcnd 10310 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  b )
)  e.  CC )
6846flcld 11136 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  a )
)  e.  ZZ )
6968zcnd 10310 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( |_ `  ( A  x.  a )
)  e.  CC )
7064, 65, 67, 69sub4d 9394 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( ( A  x.  b )  -  ( A  x.  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  -  ( |_
`  ( A  x.  b ) ) )  -  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) ) ) )
71 modfrac 11190 . . . . . . . . . . . . . 14  |-  ( ( A  x.  b )  e.  RR  ->  (
( A  x.  b
)  mod  1 )  =  ( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) ) )
7247, 71syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  =  ( ( A  x.  b )  -  ( |_ `  ( A  x.  b
) ) ) )
7372eqcomd 2394 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) )  =  ( ( A  x.  b )  mod  1 ) )
74 modfrac 11190 . . . . . . . . . . . . . 14  |-  ( ( A  x.  a )  e.  RR  ->  (
( A  x.  a
)  mod  1 )  =  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) ) )
7546, 74syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  =  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a
) ) ) )
7675eqcomd 2394 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  -  ( |_ `  ( A  x.  a ) ) )  =  ( ( A  x.  a )  mod  1 ) )
7773, 76oveq12d 6040 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( ( A  x.  b )  -  ( |_ `  ( A  x.  b ) ) )  -  ( ( A  x.  a )  -  ( |_ `  ( A  x.  a
) ) ) )  =  ( ( ( A  x.  b )  mod  1 )  -  ( ( A  x.  a )  mod  1
) ) )
7863, 70, 773eqtrd 2425 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) )  =  ( ( ( A  x.  b
)  mod  1 )  -  ( ( A  x.  a )  mod  1 ) ) )
7978fveq2d 5674 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  =  ( abs `  ( ( ( A  x.  b )  mod  1 )  -  (
( A  x.  a
)  mod  1 ) ) ) )
80 1rp 10550 . . . . . . . . . . . . 13  |-  1  e.  RR+
8180a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
1  e.  RR+ )
8247, 81modcld 11183 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  e.  RR )
8382recnd 9049 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  b )  mod  1
)  e.  CC )
8446, 81modcld 11183 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  e.  RR )
8584recnd 9049 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( A  x.  a )  mod  1
)  e.  CC )
8683, 85abssubd 12184 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( ( A  x.  b )  mod  1
)  -  ( ( A  x.  a )  mod  1 ) ) )  =  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) ) )
8779, 86eqtr2d 2422 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  =  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) ) )
8887breq1d 4165 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B )  <->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) ) )
8988biimpd 199 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  a  <  b )  -> 
( ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B )  -> 
( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  <  ( 1  /  B ) ) )
9089impr 603 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) )
91 oveq2 6030 . . . . . . . . 9  |-  ( x  =  ( b  -  a )  ->  ( A  x.  x )  =  ( A  x.  ( b  -  a
) ) )
9291oveq1d 6037 . . . . . . . 8  |-  ( x  =  ( b  -  a )  ->  (
( A  x.  x
)  -  y )  =  ( ( A  x.  ( b  -  a ) )  -  y ) )
9392fveq2d 5674 . . . . . . 7  |-  ( x  =  ( b  -  a )  ->  ( abs `  ( ( A  x.  x )  -  y ) )  =  ( abs `  (
( A  x.  (
b  -  a ) )  -  y ) ) )
9493breq1d 4165 . . . . . 6  |-  ( x  =  ( b  -  a )  ->  (
( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B )  <->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  y
) )  <  (
1  /  B ) ) )
95 oveq2 6030 . . . . . . . 8  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( ( A  x.  ( b  -  a ) )  -  y )  =  ( ( A  x.  ( b  -  a
) )  -  (
( |_ `  ( A  x.  b )
)  -  ( |_
`  ( A  x.  a ) ) ) ) )
9695fveq2d 5674 . . . . . . 7  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( abs `  ( ( A  x.  ( b  -  a
) )  -  y
) )  =  ( abs `  ( ( A  x.  ( b  -  a ) )  -  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) ) ) ) )
9796breq1d 4165 . . . . . 6  |-  ( y  =  ( ( |_
`  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a ) ) )  ->  ( ( abs `  ( ( A  x.  ( b  -  a ) )  -  y ) )  < 
( 1  /  B
)  <->  ( abs `  (
( A  x.  (
b  -  a ) )  -  ( ( |_ `  ( A  x.  b ) )  -  ( |_ `  ( A  x.  a
) ) ) ) )  <  ( 1  /  B ) ) )
9894, 97rspc2ev 3005 . . . . 5  |-  ( ( ( b  -  a
)  e.  ( 1 ... B )  /\  ( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) )  e.  NN0  /\  ( abs `  ( ( A  x.  ( b  -  a ) )  -  ( ( |_ `  ( A  x.  b
) )  -  ( |_ `  ( A  x.  a ) ) ) ) )  <  (
1  /  B ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
9943, 59, 90, 98syl3anc 1184 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  /\  ( a  <  b  /\  ( abs `  (
( ( A  x.  a )  mod  1
)  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
10099ex 424 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  ( a  e.  ( 0 ... B
)  /\  b  e.  ( 0 ... B
) ) )  -> 
( ( a  < 
b  /\  ( abs `  ( ( ( A  x.  a )  mod  1 )  -  (
( A  x.  b
)  mod  1 ) ) )  <  (
1  /  B ) )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) ) )
101100rexlimdvva 2782 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  ( E. a  e.  (
0 ... B ) E. b  e.  ( 0 ... B ) ( a  <  b  /\  ( abs `  ( ( ( A  x.  a
)  mod  1 )  -  ( ( A  x.  b )  mod  1 ) ) )  <  ( 1  /  B ) )  ->  E. x  e.  (
1 ... B ) E. y  e.  NN0  ( abs `  ( ( A  x.  x )  -  y ) )  < 
( 1  /  B
) ) )
1021, 101mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  ( 1 ... B
) E. y  e. 
NN0  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2652   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   RRcr 8924   0cc0 8925   1c1 8926    x. cmul 8930    < clt 9055    <_ cle 9056    - cmin 9225    / cdiv 9611   NNcn 9934   NN0cn0 10155   ZZcz 10216   ZZ>=cuz 10422   RR+crp 10546   ...cfz 10977   |_cfl 11130    mod cmo 11179   abscabs 11968
This theorem is referenced by:  irrapxlem4  26581
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-n0 10156  df-z 10217  df-uz 10423  df-rp 10547  df-ico 10856  df-fz 10978  df-fl 11131  df-mod 11180  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970
  Copyright terms: Public domain W3C validator