Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Unicode version

Theorem irrapxlem5 26234
Description: Lemma for irrapx1 26236. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem irrapxlem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  B  e.  RR+ )
21rpreccld 10489 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
1  /  B )  e.  RR+ )
32rprege0d 10486 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( 1  /  B
)  e.  RR  /\  0  <_  ( 1  /  B ) ) )
4 flge0nn0 11037 . . . 4  |-  ( ( ( 1  /  B
)  e.  RR  /\  0  <_  ( 1  /  B ) )  -> 
( |_ `  (
1  /  B ) )  e.  NN0 )
5 nn0p1nn 10092 . . . 4  |-  ( ( |_ `  ( 1  /  B ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  B ) )  +  1 )  e.  NN )
63, 4, 53syl 18 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( |_ `  (
1  /  B ) )  +  1 )  e.  NN )
7 irrapxlem4 26233 . . 3  |-  ( ( A  e.  RR+  /\  (
( |_ `  (
1  /  B ) )  +  1 )  e.  NN )  ->  E. a  e.  NN  E. b  e.  NN  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )
86, 7syldan 456 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. a  e.  NN  E. b  e.  NN  ( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) ) )
9 simplrr 737 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  NN )
10 nnq 10418 . . . . . . 7  |-  ( b  e.  NN  ->  b  e.  QQ )
119, 10syl 15 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  QQ )
12 simplrl 736 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  NN )
13 nnq 10418 . . . . . . 7  |-  ( a  e.  NN  ->  a  e.  QQ )
1412, 13syl 15 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  QQ )
1512nnne0d 9877 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  =/=  0 )
16 qdivcl 10426 . . . . . 6  |-  ( ( b  e.  QQ  /\  a  e.  QQ  /\  a  =/=  0 )  ->  (
b  /  a )  e.  QQ )
1711, 14, 15, 16syl3anc 1182 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  QQ )
189nnrpd 10478 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  RR+ )
1912nnrpd 10478 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  RR+ )
2018, 19rpdivcld 10496 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  RR+ )
2120rpgt0d 10482 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( b  /  a ) )
2212nnred 9848 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  RR )
2312nnnn0d 10107 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  NN0 )
2423nn0ge0d 10110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  a )
2522, 24absidd 11995 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  a
)  =  a )
2625eqcomd 2363 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  =  ( abs `  a ) )
2726oveq1d 5957 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( ( abs `  a )  x.  ( abs `  ( ( b  /  a )  -  A ) ) ) )
2812nncnd 9849 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  CC )
29 qre 10410 . . . . . . . . . . . . 13  |-  ( ( b  /  a )  e.  QQ  ->  (
b  /  a )  e.  RR )
3017, 29syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  RR )
31 rpre 10449 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e.  RR )
3231ad3antrrr 710 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  A  e.  RR )
3330, 32resubcld 9298 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( b  / 
a )  -  A
)  e.  RR )
3433recnd 8948 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( b  / 
a )  -  A
)  e.  CC )
3528, 34absmuld 12026 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) )  =  ( ( abs `  a )  x.  ( abs `  (
( b  /  a
)  -  A ) ) ) )
3627, 35eqtr4d 2393 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) ) )
37 qcn 10419 . . . . . . . . . . . 12  |-  ( ( b  /  a )  e.  QQ  ->  (
b  /  a )  e.  CC )
3817, 37syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  CC )
39 rpcn 10451 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  A  e.  CC )
4039ad3antrrr 710 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  A  e.  CC )
4128, 38, 40subdid 9322 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
( b  /  a
)  -  A ) )  =  ( ( a  x.  ( b  /  a ) )  -  ( a  x.  A ) ) )
429nncnd 9849 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  CC )
4342, 28, 15divcan2d 9625 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
b  /  a ) )  =  b )
4428, 40mulcomd 8943 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  A
)  =  ( A  x.  a ) )
4543, 44oveq12d 5960 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  x.  ( b  /  a
) )  -  (
a  x.  A ) )  =  ( b  -  ( A  x.  a ) ) )
4641, 45eqtrd 2390 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
( b  /  a
)  -  A ) )  =  ( b  -  ( A  x.  a ) ) )
4746fveq2d 5609 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) )  =  ( abs `  ( b  -  ( A  x.  a )
) ) )
4832, 22remulcld 8950 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( A  x.  a
)  e.  RR )
4948recnd 8948 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( A  x.  a
)  e.  CC )
5042, 49abssubd 12025 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
b  -  ( A  x.  a ) ) )  =  ( abs `  ( ( A  x.  a )  -  b
) ) )
5136, 47, 503eqtrd 2394 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( abs `  (
( A  x.  a
)  -  b ) ) )
529nnred 9848 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  RR )
5348, 52resubcld 9298 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( A  x.  a )  -  b
)  e.  RR )
5453recnd 8948 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( A  x.  a )  -  b
)  e.  CC )
5554abscld 12008 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  e.  RR )
56 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  RR+ )
5756rprecred 10490 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  e.  RR )
5856rpreccld 10489 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  e.  RR+ )
5958rpge0d 10483 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  ( 1  /  B ) )
6057, 59, 4syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( |_ `  (
1  /  B ) )  e.  NN0 )
6160, 5syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  NN )
6261nnrpd 10478 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR+ )
63 ifcl 3677 . . . . . . . . . 10  |-  ( ( ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR+  /\  a  e.  RR+ )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR+ )
6462, 19, 63syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR+ )
6564rprecred 10490 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  e.  RR )
6656rpred 10479 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  RR )
6722, 66remulcld 8950 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  B
)  e.  RR )
68 simpr 447 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) ) )
6958rprecred 10490 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  e.  RR )
7061nnred 9848 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )
71 ifcl 3677 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR  /\  a  e.  RR )  ->  if ( a  <_ 
( ( |_ `  ( 1  /  B
) )  +  1 ) ,  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR )
7270, 22, 71syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR )
73 fllep1 11022 . . . . . . . . . . . 12  |-  ( ( 1  /  B )  e.  RR  ->  (
1  /  B )  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) )
7457, 73syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) )
75 max2 10605 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )  ->  ( ( |_
`  ( 1  /  B ) )  +  1 )  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )
7622, 70, 75syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
7757, 70, 72, 74, 76letrd 9060 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
7858, 64lerecd 10498 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( 1  /  B )  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  <->  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  ( 1  /  B ) ) ) )
7977, 78mpbid 201 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  ( 1  /  B ) ) )
8066recnd 8948 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  CC )
8156rpne0d 10484 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  =/=  0 )
8280, 81recrecd 9620 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  =  B )
8380mulid2d 8940 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  x.  B
)  =  B )
8482, 83eqtr4d 2393 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  =  ( 1  x.  B ) )
8512nnge1d 9875 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
1  <_  a )
86 1re 8924 . . . . . . . . . . . . 13  |-  1  e.  RR
8786a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
1  e.  RR )
8887, 22, 56lemul1d 10518 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  <_  a  <->  ( 1  x.  B )  <_  ( a  x.  B ) ) )
8985, 88mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  x.  B
)  <_  ( a  x.  B ) )
9084, 89eqbrtrd 4122 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  <_  ( a  x.  B ) )
9165, 69, 67, 79, 90letrd 9060 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
a  x.  B ) )
9255, 65, 67, 68, 91ltletrd 9063 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( a  x.  B ) )
9351, 92eqbrtrd 4122 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  <  ( a  x.  B ) )
9434abscld 12008 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  e.  RR )
9512nngt0d 9876 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  a )
96 ltmul2 9694 . . . . . . 7  |-  ( ( ( abs `  (
( b  /  a
)  -  A ) )  e.  RR  /\  B  e.  RR  /\  (
a  e.  RR  /\  0  <  a ) )  ->  ( ( abs `  ( ( b  / 
a )  -  A
) )  <  B  <->  ( a  x.  ( abs `  ( ( b  / 
a )  -  A
) ) )  < 
( a  x.  B
) ) )
9794, 66, 22, 95, 96syl112anc 1186 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( abs `  (
( b  /  a
)  -  A ) )  <  B  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  B ) ) )
9893, 97mpbird 223 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  B )
9922, 22remulcld 8950 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  e.  RR )
10022, 15msqgt0d 9427 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( a  x.  a ) )
101100gt0ne0d 9424 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  =/=  0 )
10299, 101rereccld 9674 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
a  x.  a ) )  e.  RR )
103 qdencl 12903 . . . . . . . . . . 11  |-  ( ( b  /  a )  e.  QQ  ->  (denom `  ( b  /  a
) )  e.  NN )
10417, 103syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  NN )
105104nnred 9848 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  RR )
106105, 105remulcld 8950 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  e.  RR )
107104nnne0d 9877 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  =/=  0 )
108105, 107msqgt0d 9427 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) )
109108gt0ne0d 9424 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  =/=  0 )
110106, 109rereccld 9674 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
(denom `  ( b  /  a ) )  x.  (denom `  (
b  /  a ) ) ) )  e.  RR )
11122, 15rereccld 9674 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  a
)  e.  RR )
112 max1 10603 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )  ->  a  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )
11322, 70, 112syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
11419, 64lerecd 10498 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  <->  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  a ) ) )
115113, 114mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  a ) )
11655, 65, 111, 68, 115ltletrd 9063 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  a ) )
11728, 28, 28, 15, 15divdiv1d 9654 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  / 
a )  /  a
)  =  ( a  /  ( a  x.  a ) ) )
11828, 15dividd 9621 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  /  a
)  =  1 )
119118oveq1d 5957 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  / 
a )  /  a
)  =  ( 1  /  a ) )
12099recnd 8948 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  e.  CC )
12128, 120, 101divrecd 9626 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  /  (
a  x.  a ) )  =  ( a  x.  ( 1  / 
( a  x.  a
) ) ) )
122117, 119, 1213eqtr3rd 2399 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
1  /  ( a  x.  a ) ) )  =  ( 1  /  a ) )
123116, 51, 1223brtr4d 4132 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  <  ( a  x.  ( 1  /  (
a  x.  a ) ) ) )
124 ltmul2 9694 . . . . . . . . 9  |-  ( ( ( abs `  (
( b  /  a
)  -  A ) )  e.  RR  /\  ( 1  /  (
a  x.  a ) )  e.  RR  /\  ( a  e.  RR  /\  0  <  a ) )  ->  ( ( abs `  ( ( b  /  a )  -  A ) )  < 
( 1  /  (
a  x.  a ) )  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  ( 1  /  ( a  x.  a ) ) ) ) )
12594, 102, 22, 95, 124syl112anc 1186 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( a  x.  a ) )  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  ( 1  /  ( a  x.  a ) ) ) ) )
126123, 125mpbird 223 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( a  x.  a ) ) )
1279nnzd 10205 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  ZZ )
128 divdenle 12911 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  a  e.  NN )  ->  (denom `  ( b  /  a ) )  <_  a )
129127, 12, 128syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  <_  a )
130104nnnn0d 10107 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  NN0 )
131130nn0ge0d 10110 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  (denom `  (
b  /  a ) ) )
132 le2msq 9743 . . . . . . . . . 10  |-  ( ( ( (denom `  (
b  /  a ) )  e.  RR  /\  0  <_  (denom `  (
b  /  a ) ) )  /\  (
a  e.  RR  /\  0  <_  a ) )  ->  ( (denom `  ( b  /  a
) )  <_  a  <->  ( (denom `  ( b  /  a ) )  x.  (denom `  (
b  /  a ) ) )  <_  (
a  x.  a ) ) )
133105, 131, 22, 24, 132syl22anc 1183 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  <_  a  <->  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
) ) )
134129, 133mpbid 201 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
) )
135 lerec 9725 . . . . . . . . 9  |-  ( ( ( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  e.  RR  /\  0  < 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) ) )  /\  ( ( a  x.  a )  e.  RR  /\  0  < 
( a  x.  a
) ) )  -> 
( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
)  <->  ( 1  / 
( a  x.  a
) )  <_  (
1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) ) )
136106, 108, 99, 100, 135syl22anc 1183 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
)  <->  ( 1  / 
( a  x.  a
) )  <_  (
1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) ) )
137134, 136mpbid 201 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
a  x.  a ) )  <_  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
13894, 102, 110, 126, 137ltletrd 9063 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
139104nncnd 9849 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  CC )
140 2nn0 10071 . . . . . . . . 9  |-  2  e.  NN0
141140a1i 10 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
2  e.  NN0 )
142 expneg 11201 . . . . . . . 8  |-  ( ( (denom `  ( b  /  a ) )  e.  CC  /\  2  e.  NN0 )  ->  (
(denom `  ( b  /  a ) ) ^ -u 2 )  =  ( 1  / 
( (denom `  (
b  /  a ) ) ^ 2 ) ) )
143139, 141, 142syl2anc 642 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ -u 2
)  =  ( 1  /  ( (denom `  ( b  /  a
) ) ^ 2 ) ) )
144139sqvald 11332 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ 2 )  =  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) )
145144oveq2d 5958 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
(denom `  ( b  /  a ) ) ^ 2 ) )  =  ( 1  / 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) ) ) )
146143, 145eqtrd 2390 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ -u 2
)  =  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
147138, 146breqtrrd 4128 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) )
148 breq2 4106 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
0  <  x  <->  0  <  ( b  /  a ) ) )
149 oveq1 5949 . . . . . . . . 9  |-  ( x  =  ( b  / 
a )  ->  (
x  -  A )  =  ( ( b  /  a )  -  A ) )
150149fveq2d 5609 . . . . . . . 8  |-  ( x  =  ( b  / 
a )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( b  /  a
)  -  A ) ) )
151150breq1d 4112 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( b  / 
a )  -  A
) )  <  B
) )
152 fveq2 5605 . . . . . . . . 9  |-  ( x  =  ( b  / 
a )  ->  (denom `  x )  =  (denom `  ( b  /  a
) ) )
153152oveq1d 5957 . . . . . . . 8  |-  ( x  =  ( b  / 
a )  ->  (
(denom `  x ) ^ -u 2 )  =  ( (denom `  (
b  /  a ) ) ^ -u 2
) )
154150, 153breq12d 4115 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
)  <->  ( abs `  (
( b  /  a
)  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) ) )
155148, 151, 1543anbi123d 1252 . . . . . 6  |-  ( x  =  ( b  / 
a )  ->  (
( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) )  <->  ( 0  <  ( b  / 
a )  /\  ( abs `  ( ( b  /  a )  -  A ) )  < 
B  /\  ( abs `  ( ( b  / 
a )  -  A
) )  <  (
(denom `  ( b  /  a ) ) ^ -u 2 ) ) ) )
156155rspcev 2960 . . . . 5  |-  ( ( ( b  /  a
)  e.  QQ  /\  ( 0  <  (
b  /  a )  /\  ( abs `  (
( b  /  a
)  -  A ) )  <  B  /\  ( abs `  ( ( b  /  a )  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) ) )  ->  E. x  e.  QQ  ( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
15717, 21, 98, 147, 156syl13anc 1184 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  E. x  e.  QQ  ( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
158157ex 423 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ( ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) ) )
159158rexlimdvva 2750 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( E. a  e.  NN  E. b  e.  NN  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) ) )
1608, 159mpd 14 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   ifcif 3641   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   CCcc 8822   RRcr 8823   0cc0 8824   1c1 8825    + caddc 8827    x. cmul 8829    < clt 8954    <_ cle 8955    - cmin 9124   -ucneg 9125    / cdiv 9510   NNcn 9833   2c2 9882   NN0cn0 10054   ZZcz 10113   QQcq 10405   RR+crp 10443   |_cfl 11013   ^cexp 11194   abscabs 11809  denomcdenom 12896
This theorem is referenced by:  irrapxlem6  26235
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-sup 7281  df-card 7659  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-n0 10055  df-z 10114  df-uz 10320  df-q 10406  df-rp 10444  df-ico 10751  df-fz 10872  df-fl 11014  df-mod 11063  df-seq 11136  df-exp 11195  df-hash 11428  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-dvds 12623  df-gcd 12777  df-numer 12897  df-denom 12898
  Copyright terms: Public domain W3C validator