Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Structured version   Unicode version

Theorem irrapxlem5 26902
Description: Lemma for irrapx1 26904. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem irrapxlem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 449 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  B  e.  RR+ )
21rpreccld 10663 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
1  /  B )  e.  RR+ )
32rprege0d 10660 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( 1  /  B
)  e.  RR  /\  0  <_  ( 1  /  B ) ) )
4 flge0nn0 11230 . . . 4  |-  ( ( ( 1  /  B
)  e.  RR  /\  0  <_  ( 1  /  B ) )  -> 
( |_ `  (
1  /  B ) )  e.  NN0 )
5 nn0p1nn 10264 . . . 4  |-  ( ( |_ `  ( 1  /  B ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  B ) )  +  1 )  e.  NN )
63, 4, 53syl 19 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  (
( |_ `  (
1  /  B ) )  +  1 )  e.  NN )
7 irrapxlem4 26901 . . 3  |-  ( ( A  e.  RR+  /\  (
( |_ `  (
1  /  B ) )  +  1 )  e.  NN )  ->  E. a  e.  NN  E. b  e.  NN  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )
86, 7syldan 458 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. a  e.  NN  E. b  e.  NN  ( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) ) )
9 simplrr 739 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  NN )
10 nnq 10592 . . . . . . 7  |-  ( b  e.  NN  ->  b  e.  QQ )
119, 10syl 16 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  QQ )
12 simplrl 738 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  NN )
13 nnq 10592 . . . . . . 7  |-  ( a  e.  NN  ->  a  e.  QQ )
1412, 13syl 16 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  QQ )
1512nnne0d 10049 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  =/=  0 )
16 qdivcl 10600 . . . . . 6  |-  ( ( b  e.  QQ  /\  a  e.  QQ  /\  a  =/=  0 )  ->  (
b  /  a )  e.  QQ )
1711, 14, 15, 16syl3anc 1185 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  QQ )
189nnrpd 10652 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  RR+ )
1912nnrpd 10652 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  RR+ )
2018, 19rpdivcld 10670 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  RR+ )
2120rpgt0d 10656 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( b  /  a ) )
2212nnred 10020 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  RR )
2312nnnn0d 10279 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  NN0 )
2423nn0ge0d 10282 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  a )
2522, 24absidd 12230 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  a
)  =  a )
2625eqcomd 2443 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  =  ( abs `  a ) )
2726oveq1d 6099 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( ( abs `  a )  x.  ( abs `  ( ( b  /  a )  -  A ) ) ) )
2812nncnd 10021 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  e.  CC )
29 qre 10584 . . . . . . . . . . . . 13  |-  ( ( b  /  a )  e.  QQ  ->  (
b  /  a )  e.  RR )
3017, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  RR )
31 rpre 10623 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e.  RR )
3231ad3antrrr 712 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  A  e.  RR )
3330, 32resubcld 9470 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( b  / 
a )  -  A
)  e.  RR )
3433recnd 9119 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( b  / 
a )  -  A
)  e.  CC )
3528, 34absmuld 12261 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) )  =  ( ( abs `  a )  x.  ( abs `  (
( b  /  a
)  -  A ) ) ) )
3627, 35eqtr4d 2473 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) ) )
37 qcn 10593 . . . . . . . . . . . 12  |-  ( ( b  /  a )  e.  QQ  ->  (
b  /  a )  e.  CC )
3817, 37syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( b  /  a
)  e.  CC )
39 rpcn 10625 . . . . . . . . . . . 12  |-  ( A  e.  RR+  ->  A  e.  CC )
4039ad3antrrr 712 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  A  e.  CC )
4128, 38, 40subdid 9494 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
( b  /  a
)  -  A ) )  =  ( ( a  x.  ( b  /  a ) )  -  ( a  x.  A ) ) )
429nncnd 10021 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  CC )
4342, 28, 15divcan2d 9797 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
b  /  a ) )  =  b )
4428, 40mulcomd 9114 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  A
)  =  ( A  x.  a ) )
4543, 44oveq12d 6102 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  x.  ( b  /  a
) )  -  (
a  x.  A ) )  =  ( b  -  ( A  x.  a ) ) )
4641, 45eqtrd 2470 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
( b  /  a
)  -  A ) )  =  ( b  -  ( A  x.  a ) ) )
4746fveq2d 5735 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
a  x.  ( ( b  /  a )  -  A ) ) )  =  ( abs `  ( b  -  ( A  x.  a )
) ) )
4832, 22remulcld 9121 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( A  x.  a
)  e.  RR )
4948recnd 9119 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( A  x.  a
)  e.  CC )
5042, 49abssubd 12260 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
b  -  ( A  x.  a ) ) )  =  ( abs `  ( ( A  x.  a )  -  b
) ) )
5136, 47, 503eqtrd 2474 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  =  ( abs `  (
( A  x.  a
)  -  b ) ) )
529nnred 10020 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  RR )
5348, 52resubcld 9470 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( A  x.  a )  -  b
)  e.  RR )
5453recnd 9119 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( A  x.  a )  -  b
)  e.  CC )
5554abscld 12243 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  e.  RR )
56 simpllr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  RR+ )
5756rprecred 10664 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  e.  RR )
5856rpreccld 10663 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  e.  RR+ )
5958rpge0d 10657 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  ( 1  /  B ) )
6057, 59, 4syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( |_ `  (
1  /  B ) )  e.  NN0 )
6160, 5syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  NN )
6261nnrpd 10652 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR+ )
63 ifcl 3777 . . . . . . . . . 10  |-  ( ( ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR+  /\  a  e.  RR+ )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR+ )
6462, 19, 63syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR+ )
6564rprecred 10664 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  e.  RR )
6656rpred 10653 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  RR )
6722, 66remulcld 9121 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  B
)  e.  RR )
68 simpr 449 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) ) )
6958rprecred 10664 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  e.  RR )
7061nnred 10020 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )
71 ifcl 3777 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR  /\  a  e.  RR )  ->  if ( a  <_ 
( ( |_ `  ( 1  /  B
) )  +  1 ) ,  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR )
7270, 22, 71syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  e.  RR )
73 fllep1 11215 . . . . . . . . . . . 12  |-  ( ( 1  /  B )  e.  RR  ->  (
1  /  B )  <_  ( ( |_
`  ( 1  /  B ) )  +  1 ) )
7457, 73syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) )
75 max2 10780 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )  ->  ( ( |_
`  ( 1  /  B ) )  +  1 )  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )
7622, 70, 75syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( |_ `  ( 1  /  B
) )  +  1 )  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
7757, 70, 72, 74, 76letrd 9232 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  B
)  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
7858, 64lerecd 10672 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( 1  /  B )  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  <->  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  ( 1  /  B ) ) ) )
7977, 78mpbid 203 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  ( 1  /  B ) ) )
8066recnd 9119 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  e.  CC )
8156rpne0d 10658 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  B  =/=  0 )
8280, 81recrecd 9792 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  =  B )
8380mulid2d 9111 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  x.  B
)  =  B )
8482, 83eqtr4d 2473 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  =  ( 1  x.  B ) )
8512nnge1d 10047 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
1  <_  a )
86 1re 9095 . . . . . . . . . . . . 13  |-  1  e.  RR
8786a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
1  e.  RR )
8887, 22, 56lemul1d 10692 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  <_  a  <->  ( 1  x.  B )  <_  ( a  x.  B ) ) )
8985, 88mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  x.  B
)  <_  ( a  x.  B ) )
9084, 89eqbrtrd 4235 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
1  /  B ) )  <_  ( a  x.  B ) )
9165, 69, 67, 79, 90letrd 9232 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
a  x.  B ) )
9255, 65, 67, 68, 91ltletrd 9235 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( a  x.  B ) )
9351, 92eqbrtrd 4235 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  <  ( a  x.  B ) )
9434abscld 12243 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  e.  RR )
9512nngt0d 10048 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  a )
96 ltmul2 9866 . . . . . . 7  |-  ( ( ( abs `  (
( b  /  a
)  -  A ) )  e.  RR  /\  B  e.  RR  /\  (
a  e.  RR  /\  0  <  a ) )  ->  ( ( abs `  ( ( b  / 
a )  -  A
) )  <  B  <->  ( a  x.  ( abs `  ( ( b  / 
a )  -  A
) ) )  < 
( a  x.  B
) ) )
9794, 66, 22, 95, 96syl112anc 1189 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( abs `  (
( b  /  a
)  -  A ) )  <  B  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  B ) ) )
9893, 97mpbird 225 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  B )
9922, 22remulcld 9121 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  e.  RR )
10022, 15msqgt0d 9599 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( a  x.  a ) )
101100gt0ne0d 9596 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  =/=  0 )
10299, 101rereccld 9846 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
a  x.  a ) )  e.  RR )
103 qdencl 13138 . . . . . . . . . . 11  |-  ( ( b  /  a )  e.  QQ  ->  (denom `  ( b  /  a
) )  e.  NN )
10417, 103syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  NN )
105104nnred 10020 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  RR )
106105, 105remulcld 9121 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  e.  RR )
107104nnne0d 10049 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  =/=  0 )
108105, 107msqgt0d 9599 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) )
109108gt0ne0d 9596 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  =/=  0 )
110106, 109rereccld 9846 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
(denom `  ( b  /  a ) )  x.  (denom `  (
b  /  a ) ) ) )  e.  RR )
11122, 15rereccld 9846 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  a
)  e.  RR )
112 max1 10778 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  ( ( |_ `  ( 1  /  B
) )  +  1 )  e.  RR )  ->  a  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )
11322, 70, 112syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
a  <_  if (
a  <_  ( ( |_ `  ( 1  /  B ) )  +  1 ) ,  ( ( |_ `  (
1  /  B ) )  +  1 ) ,  a ) )
11419, 64lerecd 10672 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  <_  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a )  <->  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  a ) ) )
115113, 114mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  <_  (
1  /  a ) )
11655, 65, 111, 68, 115ltletrd 9235 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  a ) )
11728, 28, 28, 15, 15divdiv1d 9826 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  / 
a )  /  a
)  =  ( a  /  ( a  x.  a ) ) )
11828, 15dividd 9793 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  /  a
)  =  1 )
119118oveq1d 6099 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( a  / 
a )  /  a
)  =  ( 1  /  a ) )
12099recnd 9119 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  a
)  e.  CC )
12128, 120, 101divrecd 9798 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  /  (
a  x.  a ) )  =  ( a  x.  ( 1  / 
( a  x.  a
) ) ) )
122117, 119, 1213eqtr3rd 2479 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  (
1  /  ( a  x.  a ) ) )  =  ( 1  /  a ) )
123116, 51, 1223brtr4d 4245 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( a  x.  ( abs `  ( ( b  /  a )  -  A ) ) )  <  ( a  x.  ( 1  /  (
a  x.  a ) ) ) )
124 ltmul2 9866 . . . . . . . . 9  |-  ( ( ( abs `  (
( b  /  a
)  -  A ) )  e.  RR  /\  ( 1  /  (
a  x.  a ) )  e.  RR  /\  ( a  e.  RR  /\  0  <  a ) )  ->  ( ( abs `  ( ( b  /  a )  -  A ) )  < 
( 1  /  (
a  x.  a ) )  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  ( 1  /  ( a  x.  a ) ) ) ) )
12594, 102, 22, 95, 124syl112anc 1189 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( a  x.  a ) )  <->  ( a  x.  ( abs `  (
( b  /  a
)  -  A ) ) )  <  (
a  x.  ( 1  /  ( a  x.  a ) ) ) ) )
126123, 125mpbird 225 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( a  x.  a ) ) )
1279nnzd 10379 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
b  e.  ZZ )
128 divdenle 13146 . . . . . . . . . 10  |-  ( ( b  e.  ZZ  /\  a  e.  NN )  ->  (denom `  ( b  /  a ) )  <_  a )
129127, 12, 128syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  <_  a )
130104nnnn0d 10279 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  NN0 )
131130nn0ge0d 10282 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
0  <_  (denom `  (
b  /  a ) ) )
132 le2msq 9915 . . . . . . . . . 10  |-  ( ( ( (denom `  (
b  /  a ) )  e.  RR  /\  0  <_  (denom `  (
b  /  a ) ) )  /\  (
a  e.  RR  /\  0  <_  a ) )  ->  ( (denom `  ( b  /  a
) )  <_  a  <->  ( (denom `  ( b  /  a ) )  x.  (denom `  (
b  /  a ) ) )  <_  (
a  x.  a ) ) )
133105, 131, 22, 24, 132syl22anc 1186 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  <_  a  <->  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
) ) )
134129, 133mpbid 203 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
) )
135 lerec 9897 . . . . . . . . 9  |-  ( ( ( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  e.  RR  /\  0  < 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) ) )  /\  ( ( a  x.  a )  e.  RR  /\  0  < 
( a  x.  a
) ) )  -> 
( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
)  <->  ( 1  / 
( a  x.  a
) )  <_  (
1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) ) )
136106, 108, 99, 100, 135syl22anc 1186 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) )  <_ 
( a  x.  a
)  <->  ( 1  / 
( a  x.  a
) )  <_  (
1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) ) )
137134, 136mpbid 203 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
a  x.  a ) )  <_  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
13894, 102, 110, 126, 137ltletrd 9235 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
139104nncnd 10021 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
(denom `  ( b  /  a ) )  e.  CC )
140 2nn0 10243 . . . . . . . . 9  |-  2  e.  NN0
141140a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
2  e.  NN0 )
142 expneg 11394 . . . . . . . 8  |-  ( ( (denom `  ( b  /  a ) )  e.  CC  /\  2  e.  NN0 )  ->  (
(denom `  ( b  /  a ) ) ^ -u 2 )  =  ( 1  / 
( (denom `  (
b  /  a ) ) ^ 2 ) ) )
143139, 141, 142syl2anc 644 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ -u 2
)  =  ( 1  /  ( (denom `  ( b  /  a
) ) ^ 2 ) ) )
144139sqvald 11525 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ 2 )  =  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) )
145144oveq2d 6100 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( 1  /  (
(denom `  ( b  /  a ) ) ^ 2 ) )  =  ( 1  / 
( (denom `  (
b  /  a ) )  x.  (denom `  ( b  /  a
) ) ) ) )
146143, 145eqtrd 2470 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( (denom `  (
b  /  a ) ) ^ -u 2
)  =  ( 1  /  ( (denom `  ( b  /  a
) )  x.  (denom `  ( b  /  a
) ) ) ) )
147138, 146breqtrrd 4241 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  -> 
( abs `  (
( b  /  a
)  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) )
148 breq2 4219 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
0  <  x  <->  0  <  ( b  /  a ) ) )
149 oveq1 6091 . . . . . . . . 9  |-  ( x  =  ( b  / 
a )  ->  (
x  -  A )  =  ( ( b  /  a )  -  A ) )
150149fveq2d 5735 . . . . . . . 8  |-  ( x  =  ( b  / 
a )  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
( b  /  a
)  -  A ) ) )
151150breq1d 4225 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( ( b  / 
a )  -  A
) )  <  B
) )
152 fveq2 5731 . . . . . . . . 9  |-  ( x  =  ( b  / 
a )  ->  (denom `  x )  =  (denom `  ( b  /  a
) ) )
153152oveq1d 6099 . . . . . . . 8  |-  ( x  =  ( b  / 
a )  ->  (
(denom `  x ) ^ -u 2 )  =  ( (denom `  (
b  /  a ) ) ^ -u 2
) )
154150, 153breq12d 4228 . . . . . . 7  |-  ( x  =  ( b  / 
a )  ->  (
( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
)  <->  ( abs `  (
( b  /  a
)  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) ) )
155148, 151, 1543anbi123d 1255 . . . . . 6  |-  ( x  =  ( b  / 
a )  ->  (
( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) )  <->  ( 0  <  ( b  / 
a )  /\  ( abs `  ( ( b  /  a )  -  A ) )  < 
B  /\  ( abs `  ( ( b  / 
a )  -  A
) )  <  (
(denom `  ( b  /  a ) ) ^ -u 2 ) ) ) )
156155rspcev 3054 . . . . 5  |-  ( ( ( b  /  a
)  e.  QQ  /\  ( 0  <  (
b  /  a )  /\  ( abs `  (
( b  /  a
)  -  A ) )  <  B  /\  ( abs `  ( ( b  /  a )  -  A ) )  <  ( (denom `  ( b  /  a
) ) ^ -u 2
) ) )  ->  E. x  e.  QQ  ( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
15717, 21, 98, 147, 156syl13anc 1187 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) ) )  ->  E. x  e.  QQ  ( 0  <  x  /\  ( abs `  (
x  -  A ) )  <  B  /\  ( abs `  ( x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
158157ex 425 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  b  e.  NN ) )  ->  ( ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) ) )
159158rexlimdvva 2839 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( E. a  e.  NN  E. b  e.  NN  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  (
( |_ `  (
1  /  B ) )  +  1 ) ,  ( ( |_
`  ( 1  /  B ) )  +  1 ) ,  a ) )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) ) )
1608, 159mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  QQ  ( 0  < 
x  /\  ( abs `  ( x  -  A
) )  <  B  /\  ( abs `  (
x  -  A ) )  <  ( (denom `  x ) ^ -u 2
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   ifcif 3741   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    < clt 9125    <_ cle 9126    - cmin 9296   -ucneg 9297    / cdiv 9682   NNcn 10005   2c2 10054   NN0cn0 10226   ZZcz 10287   QQcq 10579   RR+crp 10617   |_cfl 11206   ^cexp 11387   abscabs 12044  denomcdenom 13131
This theorem is referenced by:  irrapxlem6  26903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-ico 10927  df-fz 11049  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-dvds 12858  df-gcd 13012  df-numer 13132  df-denom 13133
  Copyright terms: Public domain W3C validator