MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredmul Unicode version

Theorem irredmul 15491
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i  |-  I  =  (Irred `  R )
irredmul.b  |-  B  =  ( Base `  R
)
irredmul.u  |-  U  =  (Unit `  R )
irredmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
irredmul  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( X  .x.  Y )  e.  I )  -> 
( X  e.  U  \/  Y  e.  U
) )

Proof of Theorem irredmul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredmul.b . . . . 5  |-  B  =  ( Base `  R
)
2 irredmul.u . . . . 5  |-  U  =  (Unit `  R )
3 irredn0.i . . . . 5  |-  I  =  (Irred `  R )
4 irredmul.t . . . . 5  |-  .x.  =  ( .r `  R )
51, 2, 3, 4isirred2 15483 . . . 4  |-  ( ( X  .x.  Y )  e.  I  <->  ( ( X  .x.  Y )  e.  B  /\  -.  ( X  .x.  Y )  e.  U  /\  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  ( X  .x.  Y )  ->  (
x  e.  U  \/  y  e.  U )
) ) )
65simp3bi 972 . . 3  |-  ( ( X  .x.  Y )  e.  I  ->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  ( X  .x.  Y )  ->  (
x  e.  U  \/  y  e.  U )
) )
7 eqid 2283 . . . 4  |-  ( X 
.x.  Y )  =  ( X  .x.  Y
)
8 oveq1 5865 . . . . . . 7  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
98eqeq1d 2291 . . . . . 6  |-  ( x  =  X  ->  (
( x  .x.  y
)  =  ( X 
.x.  Y )  <->  ( X  .x.  y )  =  ( X  .x.  Y ) ) )
10 eleq1 2343 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  U  <->  X  e.  U ) )
1110orbi1d 683 . . . . . 6  |-  ( x  =  X  ->  (
( x  e.  U  \/  y  e.  U
)  <->  ( X  e.  U  \/  y  e.  U ) ) )
129, 11imbi12d 311 . . . . 5  |-  ( x  =  X  ->  (
( ( x  .x.  y )  =  ( X  .x.  Y )  ->  ( x  e.  U  \/  y  e.  U ) )  <->  ( ( X  .x.  y )  =  ( X  .x.  Y
)  ->  ( X  e.  U  \/  y  e.  U ) ) ) )
13 oveq2 5866 . . . . . . 7  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
1413eqeq1d 2291 . . . . . 6  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  ( X 
.x.  Y )  <->  ( X  .x.  Y )  =  ( X  .x.  Y ) ) )
15 eleq1 2343 . . . . . . 7  |-  ( y  =  Y  ->  (
y  e.  U  <->  Y  e.  U ) )
1615orbi2d 682 . . . . . 6  |-  ( y  =  Y  ->  (
( X  e.  U  \/  y  e.  U
)  <->  ( X  e.  U  \/  Y  e.  U ) ) )
1714, 16imbi12d 311 . . . . 5  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  ( X  .x.  Y )  ->  ( X  e.  U  \/  y  e.  U ) )  <->  ( ( X  .x.  Y )  =  ( X  .x.  Y
)  ->  ( X  e.  U  \/  Y  e.  U ) ) ) )
1812, 17rspc2v 2890 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.x.  y )  =  ( X  .x.  Y
)  ->  ( x  e.  U  \/  y  e.  U ) )  -> 
( ( X  .x.  Y )  =  ( X  .x.  Y )  ->  ( X  e.  U  \/  Y  e.  U ) ) ) )
197, 18mpii 39 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.x.  y )  =  ( X  .x.  Y
)  ->  ( x  e.  U  \/  y  e.  U ) )  -> 
( X  e.  U  \/  Y  e.  U
) ) )
206, 19syl5 28 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  e.  I  ->  ( X  e.  U  \/  Y  e.  U
) ) )
21203impia 1148 1  |-  ( ( X  e.  B  /\  Y  e.  B  /\  ( X  .x.  Y )  e.  I )  -> 
( X  e.  U  \/  Y  e.  U
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858   Basecbs 13148   .rcmulr 13209  Unitcui 15421  Irredcir 15422
This theorem is referenced by:  prmirredlem  16446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-irred 15425
  Copyright terms: Public domain W3C validator