MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Unicode version

Theorem irredrmul 15732
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i  |-  I  =  (Irred `  R )
irredrmul.u  |-  U  =  (Unit `  R )
irredrmul.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
irredrmul  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  I )

Proof of Theorem irredrmul
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . 2  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  X  e.  I )
2 simp1 957 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  R  e.  Ring )
3 simp3 959 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  Y  e.  U )
4 irredrmul.u . . . . . . . . 9  |-  U  =  (Unit `  R )
5 eqid 2380 . . . . . . . . 9  |-  (/r `  R
)  =  (/r `  R
)
64, 5unitdvcl 15712 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y )  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  e.  U )
763com23 1159 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  ( X  .x.  Y )  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  e.  U )
873expia 1155 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  -> 
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U ) )
92, 3, 8syl2anc 643 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  -> 
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U ) )
10 irredn0.i . . . . . . . . 9  |-  I  =  (Irred `  R )
11 eqid 2380 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
1210, 11irredcl 15729 . . . . . . . 8  |-  ( X  e.  I  ->  X  e.  ( Base `  R
) )
13123ad2ant2 979 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
14 irredrmul.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
1511, 4, 5, 14dvrcan3 15717 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  =  X )
162, 13, 3, 15syl3anc 1184 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
) (/r `  R ) Y )  =  X )
1716eleq1d 2446 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( ( X  .x.  Y ) (/r `  R
) Y )  e.  U  <->  X  e.  U
) )
189, 17sylibd 206 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  ->  X  e.  U )
)
192ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  R  e.  Ring )
20 eldifi 3405 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  R )  \  U
)  ->  y  e.  ( Base `  R )
)
2120ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  y  e.  ( Base `  R )
)
223ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  Y  e.  U )
2311, 4, 5dvrcl 15711 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
y (/r `  R ) Y )  e.  ( Base `  R ) )
2419, 21, 22, 23syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( y
(/r `  R ) Y )  e.  ( Base `  R ) )
25 eldifn 3406 . . . . . . . . . 10  |-  ( y  e.  ( ( Base `  R )  \  U
)  ->  -.  y  e.  U )
2625ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  -.  y  e.  U )
274, 14unitmulcl 15689 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  (
y (/r `  R ) Y )  e.  U  /\  Y  e.  U )  ->  ( ( y (/r `  R ) Y ) 
.x.  Y )  e.  U )
28273com23 1159 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  (
y (/r `  R ) Y )  e.  U )  ->  ( ( y (/r `  R ) Y )  .x.  Y )  e.  U )
29283expia 1155 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( y (/r `  R
) Y )  e.  U  ->  ( (
y (/r `  R ) Y )  .x.  Y )  e.  U ) )
3019, 22, 29syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  e.  U  -> 
( ( y (/r `  R ) Y ) 
.x.  Y )  e.  U ) )
3111, 4, 5, 14dvrcan1 15716 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
)  /\  Y  e.  U )  ->  (
( y (/r `  R
) Y )  .x.  Y )  =  y )
3219, 21, 22, 31syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  .x.  Y )  =  y )
3332eleq1d 2446 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
( y (/r `  R
) Y )  .x.  Y )  e.  U  <->  y  e.  U ) )
3430, 33sylibd 206 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
y (/r `  R ) Y )  e.  U  -> 
y  e.  U ) )
3526, 34mtod 170 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  -.  (
y (/r `  R ) Y )  e.  U )
3624, 35eldifd 3267 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( y
(/r `  R ) Y )  e.  ( (
Base `  R )  \  U ) )
37 simprr 734 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( x  .x.  y )  =  ( X  .x.  Y ) )
3837oveq1d 6028 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
x  .x.  y )
(/r `  R ) Y )  =  ( ( X  .x.  Y ) (/r `  R ) Y ) )
39 eldifi 3405 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  R )  \  U
)  ->  x  e.  ( Base `  R )
)
4039ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  x  e.  ( Base `  R )
)
4111, 4, 5, 14dvrass 15715 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  Y  e.  U ) )  -> 
( ( x  .x.  y ) (/r `  R
) Y )  =  ( x  .x.  (
y (/r `  R ) Y ) ) )
4219, 40, 21, 22, 41syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( (
x  .x.  y )
(/r `  R ) Y )  =  ( x 
.x.  ( y (/r `  R ) Y ) ) )
4316ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( ( X  .x.  Y ) (/r `  R ) Y )  =  X )
4438, 42, 433eqtr3d 2420 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  ( x  .x.  ( y (/r `  R
) Y ) )  =  X )
45 oveq2 6021 . . . . . . . . 9  |-  ( z  =  ( y (/r `  R ) Y )  ->  ( x  .x.  z )  =  ( x  .x.  ( y (/r `  R ) Y ) ) )
4645eqeq1d 2388 . . . . . . . 8  |-  ( z  =  ( y (/r `  R ) Y )  ->  ( ( x 
.x.  z )  =  X  <->  ( x  .x.  ( y (/r `  R
) Y ) )  =  X ) )
4746rspcev 2988 . . . . . . 7  |-  ( ( ( y (/r `  R
) Y )  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  (
y (/r `  R ) Y ) )  =  X )  ->  E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X )
4836, 44, 47syl2anc 643 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  X  e.  I  /\  Y  e.  U
)  /\  x  e.  ( ( Base `  R
)  \  U )
)  /\  ( y  e.  ( ( Base `  R
)  \  U )  /\  ( x  .x.  y
)  =  ( X 
.x.  Y ) ) )  ->  E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X )
4948rexlimdvaa 2767 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  /\  x  e.  (
( Base `  R )  \  U ) )  -> 
( E. y  e.  ( ( Base `  R
)  \  U )
( x  .x.  y
)  =  ( X 
.x.  Y )  ->  E. z  e.  (
( Base `  R )  \  U ) ( x 
.x.  z )  =  X ) )
5049reximdva 2754 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( E. x  e.  (
( Base `  R )  \  U ) E. y  e.  ( ( Base `  R
)  \  U )
( x  .x.  y
)  =  ( X 
.x.  Y )  ->  E. x  e.  (
( Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) )
5118, 50orim12d 812 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  (
( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) )  ->  ( X  e.  U  \/  E. x  e.  ( (
Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) ) )
5211, 4unitcl 15684 . . . . . 6  |-  ( Y  e.  U  ->  Y  e.  ( Base `  R
) )
53523ad2ant3 980 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
5411, 14rngcl 15597 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  Y  e.  ( Base `  R )
)  ->  ( X  .x.  Y )  e.  (
Base `  R )
)
552, 13, 53, 54syl3anc 1184 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  ( Base `  R
) )
56 eqid 2380 . . . . 5  |-  ( (
Base `  R )  \  U )  =  ( ( Base `  R
)  \  U )
5711, 4, 10, 56, 14isnirred 15725 . . . 4  |-  ( ( X  .x.  Y )  e.  ( Base `  R
)  ->  ( -.  ( X  .x.  Y )  e.  I  <->  ( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) ) ) )
5855, 57syl 16 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  ( X  .x.  Y
)  e.  I  <->  ( ( X  .x.  Y )  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. y  e.  (
( Base `  R )  \  U ) ( x 
.x.  y )  =  ( X  .x.  Y
) ) ) )
5911, 4, 10, 56, 14isnirred 15725 . . . 4  |-  ( X  e.  ( Base `  R
)  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  ( ( Base `  R
)  \  U ) E. z  e.  (
( Base `  R )  \  U ) ( x 
.x.  z )  =  X ) ) )
6013, 59syl 16 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  X  e.  I  <->  ( X  e.  U  \/  E. x  e.  ( (
Base `  R )  \  U ) E. z  e.  ( ( Base `  R
)  \  U )
( x  .x.  z
)  =  X ) ) )
6151, 58, 603imtr4d 260 . 2  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( -.  ( X  .x.  Y
)  e.  I  ->  -.  X  e.  I
) )
621, 61mt4d 132 1  |-  ( ( R  e.  Ring  /\  X  e.  I  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  I )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2643    \ cdif 3253   ` cfv 5387  (class class class)co 6013   Basecbs 13389   .rcmulr 13450   Ringcrg 15580  Unitcui 15664  Irredcir 15665  /rcdvr 15707
This theorem is referenced by:  irredlmul  15733  irredneg  15735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-0g 13647  df-mnd 14610  df-grp 14732  df-minusg 14733  df-mgp 15569  df-rng 15583  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-irred 15668  df-invr 15697  df-dvr 15708
  Copyright terms: Public domain W3C validator