MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irrmul Structured version   Unicode version

Theorem irrmul 10604
Description: The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irrmul  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )

Proof of Theorem irrmul
StepHypRef Expression
1 eldif 3332 . . 3  |-  ( A  e.  ( RR  \  QQ )  <->  ( A  e.  RR  /\  -.  A  e.  QQ ) )
2 qre 10584 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  RR )
3 remulcl 9080 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
42, 3sylan2 462 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  RR )
54ad2ant2r 729 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  RR )
6 qdivcl 10600 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  B
)  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  e.  QQ )
763expb 1155 . . . . . . . . . . . 12  |-  ( ( ( A  x.  B
)  e.  QQ  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /  B )  e.  QQ )
87expcom 426 . . . . . . . . . . 11  |-  ( ( B  e.  QQ  /\  B  =/=  0 )  -> 
( ( A  x.  B )  e.  QQ  ->  ( ( A  x.  B )  /  B
)  e.  QQ ) )
98adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  e.  QQ  ->  ( ( A  x.  B )  /  B )  e.  QQ ) )
10 qcn 10593 . . . . . . . . . . . . 13  |-  ( B  e.  QQ  ->  B  e.  CC )
11 recn 9085 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  A  e.  CC )
12 divcan4 9708 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
1311, 12syl3an1 1218 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
1410, 13syl3an2 1219 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
15143expb 1155 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /  B )  =  A )
1615eleq1d 2504 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( (
( A  x.  B
)  /  B )  e.  QQ  <->  A  e.  QQ ) )
179, 16sylibd 207 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  e.  QQ  ->  A  e.  QQ ) )
1817con3d 128 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( -.  A  e.  QQ  ->  -.  ( A  x.  B
)  e.  QQ ) )
1918ex 425 . . . . . . 7  |-  ( A  e.  RR  ->  (
( B  e.  QQ  /\  B  =/=  0 )  ->  ( -.  A  e.  QQ  ->  -.  ( A  x.  B )  e.  QQ ) ) )
2019com23 75 . . . . . 6  |-  ( A  e.  RR  ->  ( -.  A  e.  QQ  ->  ( ( B  e.  QQ  /\  B  =/=  0 )  ->  -.  ( A  x.  B
)  e.  QQ ) ) )
2120imp31 423 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  -.  ( A  x.  B
)  e.  QQ )
225, 21jca 520 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  RR  /\ 
-.  ( A  x.  B )  e.  QQ ) )
23223impb 1150 . . 3  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( ( A  x.  B )  e.  RR  /\  -.  ( A  x.  B )  e.  QQ ) )
241, 23syl3an1b 1221 . 2  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  e.  RR  /\  -.  ( A  x.  B
)  e.  QQ ) )
25 eldif 3332 . 2  |-  ( ( A  x.  B )  e.  ( RR  \  QQ )  <->  ( ( A  x.  B )  e.  RR  /\  -.  ( A  x.  B )  e.  QQ ) )
2624, 25sylibr 205 1  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601    \ cdif 3319  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995    x. cmul 9000    / cdiv 9682   QQcq 10579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-n0 10227  df-z 10288  df-q 10580
  Copyright terms: Public domain W3C validator