MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabv Structured version   Unicode version

Theorem isabv 15907
Description: Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvfval.a  |-  A  =  (AbsVal `  R )
abvfval.b  |-  B  =  ( Base `  R
)
abvfval.p  |-  .+  =  ( +g  `  R )
abvfval.t  |-  .x.  =  ( .r `  R )
abvfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isabv  |-  ( R  e.  Ring  ->  ( F  e.  A  <->  ( F : B --> ( 0 [,) 
+oo )  /\  A. x  e.  B  (
( ( F `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) ) )
Distinct variable groups:    x, y, B    x, F, y    x, R, y
Allowed substitution hints:    A( x, y)    .+ ( x, y)    .x. ( x, y)    .0. ( x, y)

Proof of Theorem isabv
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 abvfval.a . . . 4  |-  A  =  (AbsVal `  R )
2 abvfval.b . . . 4  |-  B  =  ( Base `  R
)
3 abvfval.p . . . 4  |-  .+  =  ( +g  `  R )
4 abvfval.t . . . 4  |-  .x.  =  ( .r `  R )
5 abvfval.z . . . 4  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5abvfval 15906 . . 3  |-  ( R  e.  Ring  ->  A  =  { f  e.  ( ( 0 [,)  +oo )  ^m  B )  | 
A. x  e.  B  ( ( ( f `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( f `
 ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) ) } )
76eleq2d 2503 . 2  |-  ( R  e.  Ring  ->  ( F  e.  A  <->  F  e.  { f  e.  ( ( 0 [,)  +oo )  ^m  B )  |  A. x  e.  B  (
( ( f `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) } ) )
8 fveq1 5727 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
98eqeq1d 2444 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  x
)  =  0  <->  ( F `  x )  =  0 ) )
109bibi1d 311 . . . . . 6  |-  ( f  =  F  ->  (
( ( f `  x )  =  0  <-> 
x  =  .0.  )  <->  ( ( F `  x
)  =  0  <->  x  =  .0.  ) ) )
11 fveq1 5727 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  ( x  .x.  y ) )  =  ( F `  (
x  .x.  y )
) )
12 fveq1 5727 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
138, 12oveq12d 6099 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  x.  ( f `
 y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
1411, 13eqeq12d 2450 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  (
x  .x.  y )
)  =  ( ( f `  x )  x.  ( f `  y ) )  <->  ( F `  ( x  .x.  y
) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) ) )
15 fveq1 5727 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  ( x  .+  y ) )  =  ( F `  (
x  .+  y )
) )
168, 12oveq12d 6099 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  +  ( f `
 y ) )  =  ( ( F `
 x )  +  ( F `  y
) ) )
1715, 16breq12d 4225 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) )  <->  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
1814, 17anbi12d 692 . . . . . . 7  |-  ( f  =  F  ->  (
( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) )  <-> 
( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) )
1918ralbidv 2725 . . . . . 6  |-  ( f  =  F  ->  ( A. y  e.  B  ( ( f `  ( x  .x.  y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) )  <->  A. y  e.  B  ( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) )
2010, 19anbi12d 692 . . . . 5  |-  ( f  =  F  ->  (
( ( ( f `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( f `
 ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) )  <->  ( (
( F `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  (
( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) )
2120ralbidv 2725 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  B  ( ( ( f `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( f `
 ( x  .x.  y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x  .+  y
) )  <_  (
( f `  x
)  +  ( f `
 y ) ) ) )  <->  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  (
( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) )
2221elrab 3092 . . 3  |-  ( F  e.  { f  e.  ( ( 0 [,) 
+oo )  ^m  B
)  |  A. x  e.  B  ( (
( f `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  (
( f `  (
x  .x.  y )
)  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) }  <->  ( F  e.  ( ( 0 [,) 
+oo )  ^m  B
)  /\  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  (
( F `  (
x  .x.  y )
)  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) )
23 ovex 6106 . . . . 5  |-  ( 0 [,)  +oo )  e.  _V
24 fvex 5742 . . . . . 6  |-  ( Base `  R )  e.  _V
252, 24eqeltri 2506 . . . . 5  |-  B  e. 
_V
2623, 25elmap 7042 . . . 4  |-  ( F  e.  ( ( 0 [,)  +oo )  ^m  B
)  <->  F : B --> ( 0 [,)  +oo ) )
2726anbi1i 677 . . 3  |-  ( ( F  e.  ( ( 0 [,)  +oo )  ^m  B )  /\  A. x  e.  B  (
( ( F `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) )  <->  ( F : B
--> ( 0 [,)  +oo )  /\  A. x  e.  B  ( ( ( F `  x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  ( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) ) ) )
2822, 27bitri 241 . 2  |-  ( F  e.  { f  e.  ( ( 0 [,) 
+oo )  ^m  B
)  |  A. x  e.  B  ( (
( f `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  B  (
( f `  (
x  .x.  y )
)  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x  .+  y )
)  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) }  <->  ( F : B --> ( 0 [,) 
+oo )  /\  A. x  e.  B  (
( ( F `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) )
297, 28syl6bb 253 1  |-  ( R  e.  Ring  ->  ( F  e.  A  <->  ( F : B --> ( 0 [,) 
+oo )  /\  A. x  e.  B  (
( ( F `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  B  ( ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   {crab 2709   _Vcvv 2956   class class class wbr 4212   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   0cc0 8990    + caddc 8993    x. cmul 8995    +oocpnf 9117    <_ cle 9121   [,)cico 10918   Basecbs 13469   +g cplusg 13529   .rcmulr 13530   0gc0g 13723   Ringcrg 15660  AbsValcabv 15904
This theorem is referenced by:  isabvd  15908  abvfge0  15910  abveq0  15914  abvmul  15917  abvtri  15918  abvpropd  15930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020  df-abv 15905
  Copyright terms: Public domain W3C validator